
 

  

 

ABSTRACT 

The aging infrastructure worldwide requires rapid monitoring and maintenance to ensure the extension of its serviceable life. 

Bridges are one of the major transportation infrastructures that require intensive monitoring strategies for their proper 

maintenance. Developments and applications of bridge monitoring systems have become an active research area in recent years 

addressing the need for rapid assessment and application of mitigation measures in case of disasters such as earthquakes and 

typhoons. It has been acknowledged that one of the challenges in bridge condition monitoring is its interlayer pavement 

exposure to direct live loads and harsh environmental conditions. Non-destructive testing strategies are a prevalent monitoring 

method for bridges, and impact sounding tests are one of them in which integration of machine learning in its analysis improved 

its speed of providing results. In this study, machine learning methods are implemented to analyze impact-sounding devices for 

bridge deck pavement condition monitoring. 
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structural terms. It is important to recognize that bridge 

upgrading, and replacement may occur for other reasons 

including upgrading of a road link to a higher standard, 

increasing traffic density on a bridge, increased traffic 

loadings (vehicle weight), and changes in bridge design 

standards.  

Annual condition survey starts every third quarter of the 

year, conducted by the accredited BIs from the district 

engineering offices. Said survey is being monitored/

supervised by the regional coordinators, allowing them to 

complete the task for a period of six months. These tasks 

include, among others, bridge condition inspection, encoding, 

preparation and uploading of bridge inventory condition 

(BIC) stand-alone-program into BMS and file named BMs 

photographs using the prescribed format: one site visit, three 

mandatory and eight shots inventory photos [3]. Still, the 

bridge condition assessment and monitoring method of 

DPWH relies on a generally subjective approach resulting in 

a slower speed of presenting the actual condition of 

Philippine bridges during the inspection and prone to human 

error as it is mainly based on visual inspection. This serves as 

a motivation in proposing a more rapid and accurate method 

of assessment of bridges that is comparable with developed 

countries.  

Developments and applications of bridge monitoring 

systems have become an active research area in recent years 

addressing the need for rapid assessment and application of 

mitigation measures in case of disasters such as earthquake 

1. Introduction 

Every year, various civil infrastructures experience 

deterioration which sometimes inadvertently causes accidents, 

structural damages of varying degree that will eventually 

require additional investment. In addition, urban development 

and human mobility contribute to increase in road and bridge 

usage which add to the stresses the structure must endure 

during its lifespan. This growing concern resulted in various 

highway agencies focusing on maintenance and inspection 

using non-destructive testing techniques (NDTs).  

According to the Department of Public Works and 

Highway (DPWH) [1] in 2017, the Philippines have 8,260 

bridges, with a combined length of 367,864 m. Batangas has 

154 permanent bridges maintained and operated by four 

district offices. Based on the calendar year (CY) 2016 bridge 

condition survey, 40.73 % (3,324 bridges) of the total 

numbers of bridges are in good condition, 45.91 % (3,747 

bridges) in fair condition, 9.04 % (738 bridges) in poor 

condition, 3.22 % (263 bridges) in bad condition, and 1.09 % 

(89 bridges) are required for further assessment as they are 

under maintenance repair and rehabilitation.  

The agency uses a bridge management system (BMS) 

instituted to manage the maintenance/ rehabilitation, 

retrofitting/ strengthening, upgrading and replacement of 

bridges required to address the deterioration of bridges, and to 

maintain the bridge stock to an acceptable standard [2]. It 

does not directly consider the capacity of a bridge in traffic or 
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and typhoon [4,5]. At present, it is expensive to perform 

nondestructive tests in the Philippines as there is a scarcity of 

the available equipment for distribution to different agencies. 

This study attempted to develop a bridge condition 

monitoring device using acoustic and imaging sensors and 

establish a condition rating tool using a deep learning 

approach. Specifically, it aimed to present the results of 

bridge deck interlayer condition monitoring device, compare 

the results with the existing procedures performed by the 

concerned agency, and present the results of incorporating 

machine learning algorithms to improve the accuracy of the 

device. 

 

2. Materials and methods  

The overall methodology of the study is presented in the 

following process (Figure 1). 

Figure 1. Overall methodology. 

 

The device developed was based on the principle of 

signal acquisition and analysis and the American Standard for 

Materials Testing (ASTM) method for measuring 

delamination of concrete bridge decks by sounding (ASTM 

4580-12) [6]. 

The signal acquisition process consists of impact signal 

source, receiver collecting signal data, processing software 

for display, and interpretation of the signal data in time 

waveform and frequency domain. Figure 2 shows the 

components of the impact acquisition process used in this 

study. The impact device such as a hammer hits a specimen 

then the receiver picks up the impact sounding signals. The 

data acquisition system (DAQ) transfers the signal to the data 

preprocessing software in the computer to display graphical 

output in time waveform and frequency spectra.  

The device developed in this study was capable of 

recording sound at a user-input interval, recording images of 

the point where impact sound was collected, and providing 

immediate interlayer bonding conditions of the deck where 

the impact sound was performed. The data were collected and 

further analyzed for visual presentation of the overall bridge 

condition. 

To test the results of the device, the device was tested on 

a slab prepared for laboratory-controlled conditions 

replicating the possible internal condition of the bridge deck. 

There were two types of slabs constructed for the test: a 

regular slab and a controlled slab. Different sets of tests were 

done for each slab. Figure 3(a) below shows a regular slab, 

with the size of 1.0 m in length, 1.0 m in width and 0.15 m in 

height created with pure concrete. The slab was created 

perfectly and with no hidden voids. The regular slab was 

sectioned into nine equal parts composed of 30 cm x 30 cm 

per section. To validate the accuracy of the device, the device 

should be able to identify if the slab contains any interlayer 

condition. Since the slab is created perfectly the results for 

these slabs are said to be bonded.   

On the other hand, the slab with internal condition is 

presented in Figure 3(b). The slab was implanted with 

different objects to have deformities or voids within it. 

Materials used to replicate deformities or voids are metal 

bars, Styrofoam, plastic containers, and plastic strips. These 

objects are implanted at a depth of 8 cm from the top of the 

slab. The hollow or air spaces created by these materials will 

act as an interlayer condition. To test the accuracy of the 

device, the controlled slab was divided into nine sections with 

the dimensions of 30 cm x 30 cm per section. Hidden in 

section one was the Styrofoam while in section two and three 

were plastic strips and plastic container, respectively. From 

section four to nine, metal bars were implanted and covered 

with concrete. The interlayer status of each section was said 

to be debonded especially in section two where there was a 

huge amount of air space. To determine the accuracy of the 

device, it should be able to detect on which sections in the 

slab are bonded and/or debonded.  
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Figure 2. Sounding signal acquisition process. 
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The impact sounding data collected in the laboratory and 

field has been preprocessed by eliminating noise through 

signal filtering and extraction. Decision matrix rating tool to 

evaluate the bridge condition has been established in 

accordance with visual inspection and impact sounding data 

features. Consequently, a proposed generalized decision 

matrix approach based on the feature space was presented. In 

this approach, overall analysis of data by clustering of points 

resulted in four different zones which can describe the 

interlayer conditions. The proposed analysis could detect 

intermediate conditions interlayer, which emphasized the 

transition of damages in the interlayer section. 

Lastly, different machine learning algorithms were 

applied to determine the efficiency of the developed decision 

matrix rating tool for interlayer bonding conditions. Decision 

tree, logistic regression, neural network, and support vector 

machine algorithms were applied in combined laboratory and 

field data. Validation parameters namely accuracy, Cohen 

kappa statistic, specificity, and sensitivity demonstrated that 

logistic regression algorithm showed high accuracy results 

which is recommended to apply in future tests. 

 

3. Results and discussion 
The device development aimed to support the two stages 

of impact sounding: data collection and data analysis. These 

two stages may be handled separately or combined into one 

system. In this study, both scenarios were evaluated to 

determine the potentiality of the proposed technologies. Two 

prototypes were developed for collecting visual and acoustic 

data. The first prototype intends to evaluate the data 

collection system. It primarily focused on the execution of 

impact acoustics and the capability of full automation of the 

monitoring device. The first system only captured impact 

sound signals and the data collected was further analysed in 

the office. The second developed device was improved to 

combine the data collection and the analysis into one device. 

To test the data gathering capabilities of the device the 

field test was conducted on the two bridges located at 

Pallocan West, Batangas City, namely the Bridge of Progress 

and the Calumpang Bridge (Figure 4). Each bridge was tested 

by pushing the device along the full length of the bridge, 

stopping at set intervals to give the device time to store the 

recorded sounds for each impact. 

Field testing was performed to confirm if the data 

gathered by the device can store the four data file types for 

each impact made. They are a .csv file. a .wav file, an image, 

and a .txt file containing the GPS location. It was also 

observed that the device could collect up to 200 data sets 

throughout its whole operation time that lasted for 2 h before 

its battery required charging. The charging time of the battery 

is 8 h. The challenges encountered on data collection were 

when there was poor connection on testing location thus GPS 

coordinates cannot be documented in real time. 

Table 1 shows the interlayer condition with its 

corresponding frequency behaviour. The table was tested and 

proven in the study of [7] where multiple tests in an actual 

bridge were performed and the patterns in the amplitude and 

frequencies of each impact sound was observed, considering 

the physical condition of the deck surface of each test. The 

study concluded that there were four different interlayer 

conditions which correspond to visual inspection. 

Figure 3. Laboratory-controlled slabs.  

a) Bridge of Progress, Batangas City. 

b) Bridge of Promise, Batangas City. 

Figure 4. Field test sites for the hardware.  

a) Plain slab and its dimension. 

Styrofoam 

Metal Bars 

Plastic 
strips 

Plastic 
container 

b) Slab with implants. 
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Table 1. Interlayer conditions and their frequency                 

behavior [8].  

The frequency graph of a debonded condition data is 

presented in Figure 5. The peak amplitude was measured 

upon locating the highest point reached to the graph on the    

y-axis while the frequency was determined on the x-axis 

where the peak amplitude occurs. The  data showed the peak 

amplitude higher than 50 Pa2/Hz and a frequency around 

1,000 to 1,300 Hz. The behavior of the graph indicated that 

the interlayer condition of the data was considered as 

debonded which means that the asphalt was detached from 

the concrete deck.  

 

 

On the other hand, a fair condition data frequency graph 

is presented in Figure 6 showing the peak amplitude lower 

than 50 Pa2/Hz and a frequency around 1,000 to 1,300 Hz. 

This kind of data showed that the concrete deck surface had 

minor scaling. 

 

Figure 7 shows a frequency graph of the good condition 

data with a frequency higher 1,500 Hz. This kind of data 

showed that there was no inspected damage on the surface of 

the concrete deck. 

Lastly, Figure 8 shows a frequency graph of severe 

condition data with frequency lower than 600 Hz. This kind 

of data would showed that the deterioration depth was greater 

than 25 mm.  

Condition Frequency spectra Visual inspection 

Severe Peak frequency less 

than 600 Hz 

Deterioration depth is 

greater than 25 mm.  

Asphalt concrete is 

heaved. Traces of 

moisture are remarkable 

Debonded Peak frequency of 

1,000 to 1,300 Hz, 

peak amplitude 

higher than  

50 Pa2/Hz 

Asphalt concrete is  

completely detached from 

the concrete deck 

Fair Peak frequency of 

1,000 to 1,300 Hz, peak 

amplitude lower than 

50 Pa2/Hz 

Surface of concrete deck 

shows minor scaling 

Good Peak frequency 

higher than 1,500 Hz 

Good condition, no 

inspected damage on the 

surface of concrete deck 

Figure 5. Debonded condition data.  

Figure 6. Fair condition data. 

Figure 7. Good condition data. 

Figure 8. Severe condition data. 
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Table 2 presents the table of the data captured from the 

Bridge of Progress, a three-month-old bridge, in Batangas 

City. The table showed the peak amplitudes were lower than 

50 Pa2/Hz and occurred in frequency ranging from 1,000 Hz 

to 1,300 Hz, while some were higher than 1,500 Hz. The 

results showed that the bridge’s interlayer condition was good 

or fair, which was the expected result considering the bridge’s 

age. 

 

Table 2. Collected and analyzed data from Bridge of 

Progress, Batangas City. 

 

Another data was collected from Pallocan Bridge,            

a three-year-old bridge, in Batangas City. Table 3 shows the 

peak amplitudes occur in the frequency lower than 500 Hz. 

The results showed that the bridge’s interlayer condition was 

severe, which was the expected result considering the 

bridge’s age. 

 

Table 3. Data from Pallocan Bridge, Batangas City. 

 

Table 4 shows data captured from a bridge using a 

recording sound with low sensitivity. The table showed the 

peak amplitudes occuring in the frequency lower than 600 

Hz. The results showed that the bridge’s interlayer condition 

was severe. It provided the idea that using lower sensitivity 

recording sound on the Raspberry Pi would affect the results 

of the data collected on the bridges, so it is recommended to 

change the settings of the sound recording on the Raspberry 

Pi to the maximum to cater a consistent result of the data. 

 

Table 4. Data from a bridge showing severe conditions. 

The development of condition rating tool required 

analysis of massive amounts of data and extracting its 

characteristics in a more defined way. Computational 

development resulted in the adaptation of machine learning 

algorithms in this amount of data. To further enhance the 

accuracy and preciseness of the condition rating tool, data 

were subjected to various machine learning algorithms. 

Adoption of four machine learning algorithms was 

performed namely decision tree algorithm, logistic regression, 

neural network, and support vector machine (SVM). The 

implementation of the machine learning algorithms was 

performed using Waikato Environment for Knowledge 

Analysis (WEKA), an open-source software developed by the 

University of Waikato in New Zealand, in accurately 

determining the condition of infrastructures [9]. 

Four performance metrics for each configuration were 

computed using the following metrics namely: accuracy, 

kappa statistic, sensitivity, and specificity. Accuracy pertains 

to the percentage of correctly classified instances whereas 

kappa statistic measures the inter-agreement between the 

qualitative classifications. Kappa statistics accounted for the 

uncertainty guesses of the raters [10]. On the other hand, 

sensitivity or recall determined the ratio of the positives that 

were correctly classified, and specificity rated the proportion 

of negatives that are correctly classified [11]. 

Table 5 shows the accuracy rating of different machine 

learning algorithms. Overall, the proposed decision matrix 

rating tool for impact sounding signal showed high accuracy 

when logistic regression algorithm was used and low 

accuracy when support vector machine algorithm was 

applied. Literature expressed that neural network and support 

vector machine algorithms need large amounts of training 

data, which are quite inefficient and labour-intensive to obtain 

in the field condition [11,12]. Based on the initial application 

of machine learning algorithms to impact sound, logistic 

regression machine learning approach provided the highest 

accuracy result in identifying interlayer debonding conditions. 

 

Table 5.  Summary of accuracy rating of different machine 

learning approaches. 

The study showed that the application of machine 

learning algorithms expedited the condition analysis such that 

upon establishment of the features of each condition, the 

result of impact sounds can directly be analyzed in the 

system. However, with the limiting capacity of determining 

the intermediate condition (fair condition) due to lack of 

bridges with such deck condition and difficulty of simulating 

the condition in the laboratory, the study, from here on, 

focused on the extreme conditions for bridge deck interlayer 

condition: bonded and debonded conditions. 

Test 
Frequency 

(Hz) 

Peak 

Amplitude 

(Pa2/Hz) 

Condition 

1 ~2,500 ~6.7 Good 

2 ~1,150 ~6.8 Fair 

3 ~1,600 ~6.8 Good 

4 ~1,250 ~10.9 Fair 

Test 
Frequency 

(Hz) 

Peak amplitude 

(Pa2/Hz) 
Condition 

 1 ~300 ~9.1 Severe 

2 ~450 ~6.6 Severe 

3 ~500 ~7.7 Severe 

4 ~480 ~8.5 Severe 

Test 
Frequency 

(Hz) 

Peak amplitude 

(Pa2/Hz) 
Condition 

1 ~100 ~60 Severe 

2 ~100 ~0.12 Severe 

3 ~200 ~0.23 Severe 

4 ~500 ~0.069F Severe 

Evaluation 

method 

Decision 

tree 

Logistic 

regression 

Neural 

network 

Support 

vector 

machine 

Accuracy, % 95.83 98.61 82.99 77.08 

Kappa 

statistic 
0.9323 0.9832 0.7268 0.5419 

Specificity 0.958 0.990 0.830 0.757 
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Further development of this study used Convolutional 

Neural Network (CNN) as the main algorithm used for image 

processing integrated with the inception model. This 

inception model helped strengthen the logistic approach of 

analysis. CNNs take advantage of the fact that the input 

consists of images, and they constrain the architecture in a 

more sensible way. 

From the laboratory validation of the performance and 

the field test report, it showed the accuracy of trained data 

sets. From the impact tests conducted on the regular slab, the 

device had performed 100 % accuracy on regular slab and 

93.33 % on the controlled slab indicating an acceptable result 

of condition evaluation for pavement interlayer of bridges. 

 

4. Conclusions  

An impact device can be developed capable of impact 

sounding, its data collection and analysis. Added feature on 

collecting its GPS location and camera for image data 

collection which can provide further pavement condition of 

bridge deck is also feasible. The device can perform with 

precise movement and intervals for impact sounding can be 

0.50 m and 1.0 m depending on the preference of the 

operator. Comparing fulling automated and semi-automated 

movement, the device for impact sounding is best suited in 

semi-automatic wherein manual push and additional weights 

on the device can reduce errors in impact hitting and 

swerving during testing procedures. 

Continuous collection of data such as recorded impact 

sound, GPS location, encoded bridge information and 

pavement images and condition can be saved or stored for 

further analysis and interpretation. In addition, impact sounds 

are being recorded right after each impact; data are viewable 

on the device. Therefore, the device can provide real time 

pavement interlayer condition interpretation as well as 

appropriate data storage. 

The use of impact sound testing device for determining 

bridge deck pavement interlayer condition with machine 

learning algorithm for analysis are provides comparable 

accurate method and results of evaluating bridge deck 

pavement,  

Based on the results and conclusions, even though the 

system was effective and was functioning properly, it was 

recommended to develop a more improved robust device that 

can withstand harsh environments during field testing. 

Specifically, concerns on the battery capacity wherein power 

demand for impact sound may affect the precision of the 

impact sounding. Reporting may be improved by using 

mapping strategies and techniques or providing reporting 

templates with integration of pavement condition to actual 

bridge deck plan. Further studies on different machine 

learning approaches and its combination may be performed 

using data collection methodology used in this study. 
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