
 

  

ABSTRACT 

Understanding the complexities of human biology and making accurate medical diagnoses depend heavily on medical imaging 

technologies. However, a major barrier to proper analysis is the problem of noise interference in imaging. In this study, we use 

deep autoencoders to solve the common problem of noise reduction in computed tomography (CT) images, specifically in the 

100-image Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) dataset. The study measures the structural similarity 

index (SSIM) to evaluate the denoising performance of a sequential model using Keras. To improve the model's flexibility in 

real-world circumstances, Poisson noise has been introduced into the dataset. During training and validation, the model achieved 

significant accuracy rates of 85.63% and 88.02%, respectively, with an average SSIM score of 0.7613 for the test data. This 

study sheds light on the significance of deep autoencoders in advancing the domain of medical imaging, particularly in 

enhancing CT image reconstructions by effectively reducing noise interference while preserving crucial structural details. The 

findings pave the way for future refinements in deep learning methodologies tailored for medical imaging applications, offering 

a promising avenue toward improved diagnostic imaging in healthcare. 
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vector machines [9] and k-nearest neighbors [10,11] models. 

Autoencoders have recently become recognized as a 

potential method for denoising medical pictures [12]. 

Autoencoders are neural networks that can learn to extract 

significant elements from images and rebuild a denoised 

version of the image using these features [13]. When 

compared to conventional denoising techniques, this method 

has a number of benefits, including the ability to handle 

complicated and highly variable noise patterns and the 

capacity to learn from a large number of training instances 

[14].  

Deep autoencoders will be the primary method for 

denoising medical images, particularly computerized 

tomography (CT) images, in this study. We will go through 

the benefits of deep autoencoders and showcase an example 

that uses actual medical photos to show how effective they 

are. The study focuses on the strategic use of deep 

autoencoders for denoising in CT images. Our primary aim is 

to show that these advanced neural networks can successfully 

reduce noise from CT scans, increasing the clarity of the 

image. We hope to improve not just the precision and 

reliability of medical imaging by using the intrinsic capability 

of deep autoencoders, but also to give clearer, more accurate 

diagnostic information that may considerably aid clinical 

decision-making and patient care. 

Recent studies utilizing denoising autoencoders for 

different medical imaging applications gave a better overview 

on how to improve various medical procedures and diagnosis. 

The low number of medical images for contemporary 

disorders connected to pneumonia makes medical diagnosis 

1. Introduction 

Medical imaging plays a significant role in the diagnosis 

and treatment of many different medical illnesses [1]. It 

allows for non-invasive imaging of the internal organs and 

biological functions, providing doctors and nurses with 

crucial information. However, the images produced by these 

methods typically contain noise, which can make it 

challenging to comprehend and properly evaluate them [2].  

Medical imaging noise can originate from several 

sources, including the imaging modality itself, the subject 

being imaged, and the environment in which the imaging is 

performed [3]. These irregular intensity shifts, aberrations, 

and other distortions caused by the noise could mask 

important image details and lead to a partial or incorrect 

diagnosis [4]. 

Denoising, or the technique of eliminating noise from 

images, is therefore an essential step in the medical image 

processing pipeline. Accurate diagnosis and treatment plans 

can be made possible by medical images that have been 

cleaned of noise and made clearer and more accurate [5]. 

Automated diagnostic tools and other applications may be 

developed more easily since denoised images are also easier 

for computer algorithms to interpret [6]. 

For medical image denoising, both conventional image 

processing methods and machine learning algorithms have 

been used in the past [7]. For example, noise from medical 

imaging has been removed using filters based on spatial 

information and image statistics [8], and noise patterns in 

images have been identified and removed using support 
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of pneumonia a major challenge. While experiments with 

various models have not yet yielded satisfying results, 

transfer learning is a potential approach for transferring 

knowledge from general to specific tasks. [15] recommended 

using the CADTra automatic detection model, which employs 

classification, denoising autoencoder, and transfer learning to 

diagnose pneumonia-related disorders. To maximize the odds 

of retrieving inputs and enhancing the diagnosis process, 

preprocessing is used with an autoencoder denoising method 

with a modified loss function. To identify pneumonia, a 

transfer learning model and a four-layer convolutional neural 

network are used for classification. In comparison to current 

state-of-the-art CNN models, the suggested model is more 

effective, achieving precisions of 98% and 99% for binary 

and multiclass classification, respectively. 

Important information required for medical diagnosis are 

typically obscured by noise in speckle-prone optical 

coherence tomography. A denoising strategy for preserving 

disease characteristics on retinal optical coherence 

tomography images in ophthalmology is provided in [16]. 

During training, the proponents proposed semantic denoising 

autoencoders that combine a convolutional denoising 

autoencoder with a previously trained ResNet image classifier 

as a regularizer. By removing only the background noise that 

provides no useful information, this enhances the visibility of 

subtle details in the denoised images that are crucial for 

diagnosis. When compared to state-of-the-art denoising, this 

method achieves higher peak signal-to-noise ratios with 

PSNR = 31.0 dB and higher classification performance with 

F1 = 0.92 for denoised images. It has been demonstrated that 

semantically regularized autoencoders may denoise retinal 

OCT pictures without obscuring disease features. 

The electrocardiogram (ECG) is a commonly used 

instrument for detecting and preventing arrhythmia. In most 

instances, it produces reliable results and is non-invasive, 

meaning it doesn’t involve making physical contact with the 

patient. Unfortunately, ECG signals can be affected by many 

types of noise, which can lead to inaccurate diagnosis or 

analysis. Researchers of [17] have suggested employing 

denoising autoencoders (DAEs), which can reconstruct clean 

data from its noisy equivalent, to solve this problem. In this 

particular paper, a DAE based on fully convolutional 

networks (FCN) has been presented for both ECG signal 

denoising and compression of the input signals down to 32 

times their original size. Metrics like root-mean-square error 

(RMSE), percentage root mean square difference (PRD), and 

an improvement in signal-to-noise ratio were used to gauge 

the model’s performance (SNRimp). When it comes to 

denoising noisy ECGs at different levels of input SNR values, 

the results reveal that FCN outperforms other deep neural 

network models, showing good application prospects in 

clinical practice in the future. 

In order to improve the image clarity of noisy 

mammograms, a deep unsupervised learning algorithm for 

degraded mammography restoration was used in this 

research. For mammography restoration, a deep convolutional 

denoising autoencoder method based on total variational 

multi-norm loss function minimization has been presented in 

[18]. The proposed approach can preserve the important 

characteristics that have been used to restore image data in 

feature space while extracting pertinent features and reducing 

the dimensionality of the image data. Eventually, 

unsupervised learning is carried out based on the relationship 

between important features and the weighted parameters of 

the network model. Results from experiments confirm that the 

proposed strategy outperforms a number of state-of-the-art 

techniques.  

 

2. Materials and methods 

 

2.1. Dataset 

Datasets are the foundations for training, analyzing, and 

evaluating machine learning models, and they have played an 

important role in the discipline’s advancement [19]. In this 

work, we used a smaller sample  of photos from the cancer 

imaging collection of The Cancer Genome Atlas Lung 

Adenocarcinoma (TCGA-LUAD) [20] . By providing clinical 

images matched to subjects from The Cancer Genome Atlas 

[21], the TCGA-LUAD data collection is a part of a larger 

initiative to create a research community focused on tying 

cancer phenotypes to genotypes. The data used in this 

experiment contain one hundred distinct images of the middle 

slice of all CT images acquired where correct age, modality, 

and contrast tags could be discovered. Sample images from 

the dataset are shown in Figure 1. Each image is in .tiff 

format, with a size of 512 x 512 pixels. Data is taken from: 

https://www.kaggle.com/datasets/kmader/siim-medicalimages 

 

 

2.2. Data processing 

Preprocessing and data preparation are crucial steps in 

every machine learning operation. It comprises a series of 

steps to prepare the data for modeling and analysis. 

In this study, the first step was to convert every image in 

the dataset to a .jpg format. The data was then randomly 

Image 1 Image 2 

Image 4 Image 3 

Figure 1. Sample images from dataset.  
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divided into training and test sets once the images have been 

formatted correctly. This is crucial because test data will be 

used to evaluate the model's performance once it has been 

trained on training data. Of the total data, 20% was used for 

testing data and 80% was designated as training data. 

The study also presented the idea of "poison noise," which 

is the purposeful alteration of input data to trick machine 

learning models. To do this, Poisson noise was applied to the 

images. Poisson noise is a statistical noise type that is 

frequently observed in images and is brought on by pixel 

intensity values fluctuating randomly [22]. By adding this noise 

to the training and test data, we potentially enhance the model's 

resilience and more precisely imitate actual scenarios [6]. 

Mathematically, Poisson noise can be represented as:  

 

 

where X represents the original data and ε signifies the noise, 

which follows a Poisson distribution with a mean parameter λ. 

The Poisson distribution's variance, or mean, is represented 

by the symbol λ. The probability mass function of the Poisson 

distribution is given by: 

 

 

 

Here, k represents the number of events occurring, e is the 

base of the natural logarithm, λ is the average number of 

events, and k! denotes the factorial of k. 

The Poisson noise is added to the original data, causing a 

certain degree of perturbation based on the distribution of 

events as characterized by λ. This perturbation can affect the 

data in a way that misleads the model during training or 

inference, emphasizing the need for robust models capable of 

handling such variations and disturbances. 

A Poisson noise with λ = 1.00 was added to the original 

dataset to create their noisy counterparts. Samples of the 

original images and their noisy counterparts can be visualized 

in Figure 2.  

 

2.3. Autoencoder architecture 

The study employed an autoencoder architecture detailed 

in Table 1, constructed as a Sequential model using the Keras 

library [23]. This autoencoder consisted of an encoder 

comprising four layers, each layer housing 128, 64, 32, and 16 

nodes, consecutively. ReLU activation functions were 

employed for each layer in the encoder, facilitating non-

linearity and information extraction.  

 

Table 1. Model architecture. 

 

Conversely, the decoder mirrored the structure of the 

encoder, featuring four layers with node configurations of 16, 

32, 64, and 128. Similar to the encoder, ReLU activation 

functions were utilized across the decoder's layers. The output 

layer employed a sigmoid activation function, emphasizing the 

generation of outputs within the [0, 1] range. 

The architecture utilized the Adam optimizer, binary cross 

entropy as the loss function, and accuracy as the metric to 

compile the model. This configuration aimed to optimize the 

network's weights and biases during the training process, 

minimizing the discrepancy between predicted and actual 

values. 

Moreover, the model underwent training for 50 epochs, 

each consisting of a batch size of 8. This choice of 

hyperparameters facilitated the iterative learning process, 

refining the model's ability to reconstruct input data. 

 

2.4. Evaluation metrics 

In the evaluation of image denoising, structural similarity 

index measure (SSIM), as opposed to peak signal to noise ratio 

(PSNR), is used to compare the results with the original images 

because it is more reliable and consistent [24]. The SSIM is a 

comprehensive index, which is made up of three indicators, 

that determines the impact of structural alterations on vision, 

(1) 

(2) 

Layer 

(type) 

Output 

Shape 

No. of 

Parameters 

conv2d (Conv2D) (None, 512, 512, 128) 1280 

maxpooling2d (None, 256, 256, 128) 0 

(MaxPooling2D) conv2d1(Conv2D) (None, 256, 256, 64) 73792 

maxpooling2d1 (None, 128, 128, 64) 0 

(MaxPooling2D) conv2d2(Conv2D) (None, 128, 128, 32) 18464 

maxpooling2d2 (None, 64, 64, 32) 0 

(MaxPooling2D) conv2d3(Conv2D) (None, 64, 64, 16) 4624 

maxpooling2d3 (None, 32, 32, 16) 0 

(MaxPooling2D) conv2d4(Conv2D) (None, 32, 32, 16) 2320 

upsampling2d (None, 64, 64, 16) 0 

(UpSampling2D) conv2d5(Conv2D) (None, 64, 64, 32) 4640 

upsampling2d1 (None, 128, 128, 32) 0 

(UpSampling2D) conv2d6(Conv2D) (None, 128, 128, 64) 18496 

upsampling2d2 (None, 256, 256, 64) 0 

(UpSampling2D) conv2d7(Conv2D) (None, 256, 256, 128) 73856 

upsampling2d3 (None, 512, 512, 128) 0 

(UpSampling2D) conv2d8(Conv2D) (None, 512, 512, 1) 1153 

Model: Sequential 
Total params: 198,625 
Trainable params: 198,625 
Non-trainable params: 0  
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Figure 2. Sample of the original images and their noisy 

counterparts. 

Image 1 Image 2 

N
o
is

y
 c

o
u

n
te

rp
ar

t 
O

ri
g
in

al
 



 

  

 

Adoptante et al. / IRJIEST  8 (2022)  26-31 

29 

also known as changes in image brightness, contrast, and 

other lingering defects [25]. 

Given the original image x and the denoised image y, we 

can determine the SSIM by 

 

 

where α, β and γ > 0 control the relevance of each of three 

terms in SSIM and l, c and s are luminance (4), contrast (5) 

and structural elements (6), which are calculated by  

 

 

 

 

 

 

 

where µx and µy represent the means of the original and 

coded images, respectively, σx and σy are their respective 

standard deviations, and σxy is their covariance.  

 

3. Results and discussion 

The relatively close values between the Training Loss 

(0.1278) and Validation Loss (0.1052) suggest a model that 

effectively learns the features within the CT images while 

generalizing well to unseen data as shown in Figure 3 and 

Figure 4. The high values of both Accuracy in Training 

(0.8563) and Validation (0.8802) further support the model's 

proficiency in denoising CT images, showcasing a high level 

of precision in correctly identifying and reconstructing the 

underlying patterns within the images as shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Structural Similarity Index Measure (SSIM) 

between test images and denoised reconstructed images. 

 

Individual SSIM values for each test image and its 

denoised counterpart indicate how well the deep autoencoder 

model preserved the essential structural details present in the 

original CT scans during the denoising process. For instance, 

test images with higher SSIM values, like image 6 with an 

SSIM of 0.8496, indicate a strong preservation of structural 

information in the denoised output. On the other hand, lower 

SSIM values, such as image 1 with an SSIM of 0.5721, might 

suggest a relatively lower similarity in structural details 

between the original and denoised images. 

The average SSIM of 0.7613 across all test images 

demonstrates an overall moderate to good similarity between 

the original test images and their respective Denoised 

Reconstructed Images. This suggests that the deep 

autoencoder model generally performed well in preserving 

essential structural information during the denoising process. 

Figure 5 shows the comparison of random images from the 

test data, its corresponding noisy image, and its denoised 

reconstructed counterpart.  

(3) 

(4) 

(5) 

(6) 

Figure 3. Model accuracy. 

Figure 4. Model loss. 

Test image number 
Reconstructed 
image number 

Structural similarity 
index measure 

(SSIM) 

1 1 0.5721 

2 2 0.8296 

3 3 0.7075 

4 4 0.7340 

5 5 0.7959 

6 6 0.8496 

7 7 0.6910 

8 8 0.7660 

9 9 0.7540 

10 10 0.7715 

11 11 0.7170 

12 12 0.8016 

13 13 0.7396 

14 14 0.8010 

15 15 0.7681 

16 16 0.7869 

17 17 0.8072 

18 18 0.7907 

19 19 0.7624 

20 20 0.7810 

0.7613 Average 
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4. Conclusions 

The study has proven to be a significant stride toward 

enhancing the quality of CT image reconstruction and 

denoising. Through the utilization of a deep autoencoder 

model, the study showcased promising outcomes, aiming to 

improve the accuracy of CT image reconstruction while 

mitigating noise interference. Several measures were used to 

assess the model's performance, including as Accuracy, 

Training and Validation Loss, and the Structural Similarity 

Index Measure (SSIM). 

Throughout the testing and inference phases, the model 

consistently displayed an accurate reconstruction and 

denoising of CT images. The average SSIM score of 0.7613 

between the test images and their Denoised Reconstructed 

counterparts indicates a moderate to good level of similarity 

in structural information, underpinning the model's ability to 

preserve crucial details during the denoising process. The 

SSIM measure highlights the model's ability to generalize its 

learning to new, unknown CT images while successfully 

decreasing noise interference when combined with the 

previously mentioned Training and Validation Loss metrics. 

The study's findings demonstrate the model's excellent 

performance in denoising CT images, providing a basis for 

prospective future developments in medical imaging. But the 

study also identifies areas that need more investigation and 

development, especially when it comes to instances in which 

improving structural information preservation is necessary. 

The importance of several measures in assessing the 

model's success is highlighted by this study. Remarkably, the 

model's accuracy during training reached 85.63% with a loss 

of 0.1278, and during validation, it scored 88.02% with a loss 

of 0.1052. The range of the SSIM spanned from 0.5721 to 

0.8496, with an average score of 0.7613 across the entire test 

dataset. These metrics collectively portray the model's 

efficacy in denoising CT images, emphasizing its potential in 

the field of medical imaging.  
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