
 

  

 

ABSTRACT 
This research was conducted to create a Multi-Scale Crowd Counting Algorithm. This algorithm implements a patch-based 
inference that is able to give the number of people in an image whether the image contain a small or large crowd size. The 
algorithm was designed to perform within the standard of the existing small scale and large- scale crowd counting algorithms 
using Convolutional Neural Network Architectures such as Inception V3 for the crowd classifier, Resnet101 for the small-scale 
model, and VGG-16 for the large-scale model. This algorithm was implemented along with a user interface using PyQt5 GUI 
designer to make it more convenient to use. The algorithm works by identifying whether an image contains a small or large 
crowd, then implements a model best suited for the image. If the image is determined to contain small amount crowd, the image 
will be divided into 4 patches then a Faster R-CNN model trained on human head and body annotations will be implemented, 
while if the image contains a large number of crowd, the image will be divide into 9 patches then an inference algorithm based 
on CSR model will be implemented. 
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resolution, and erroneous ground truth labeling. [1] 
Background segmentation focuses on the foreground and 
removes the background of an image to extract the target or 
blob and be counted. On the other hand, foreground 
segmentation focuses on the background and removes the 
foreground of a specific image. The problem with these 
techniques is that if applied to a larger crowd, they were 
unable to detect every single sample in an extremely 
compressed crowd. They cannot undergo processing for 
sample overlapping. 

Crowd counting is an important research topic in the 
field of computer vision but the accuracy of crowd counting 
based still needs to be improved. [2] The problem lies within 
the accuracy, scalability, and practicality of these algorithms 
when dealing with a larger crowd scope. Researchers have 
already identified the problem in terms of large-scale crowd 
counting on still images. The notable challenges to a large-
scale counting are: Low Resolution (few pixels per target) 
which makes the analysis difficult, Severe Occlusion wherein 
body parts are not visible, and Perspective Effects or the 
change in scale. 

Throughout the years, researchers have found a way to 
gradually improve large-scale crowd counting methods. 
Idrees et. al [3] have proposed a method that includes interest 
point based counting, Fourier analysis, head detection, and 
Markov random field. They were successful in accurately 
estimating crowd counts at densities up to about 1,280 people 
using the UCF_CC_50 image dataset but, unfortunately, their 
design gave inaccurate results in counting small-scale crowd. 
Since then, the scalability of the crowd is still a challenge up 
until today. Due to the improvement of crowd counting 
studies nowadays, present methods were now using Deep 
Learning to address the dense crowd counting challenges. 
Zhang et. al [4], Boomingthan et. al [5], and Sam et. al [6] 
have used deep learning through convolutional neural 
networks to provide better accuracy but focused on detection 
and counting in large crowd densities. 

A notable strength of deep learning is that it can be 
trained well so it can be able to detect unseen humans in a 
crowd. If trained well, desired results can be obtained. A 
downside of this technique is that it will require a lot of 
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1. Introduction 
Crowds occur every day in situations like rallies, 

concerts, political speeches, stadiums, and even marathons. 
They are an important aspect and need to be considered in 
terms of public safety, public transportation, and the correct 
establishment of news or data for media. Counting every 
individual in the crowd manually would need a lot of time 
and effort, and it could almost be impossible. Although the 
number of people at an event can be estimated by some 
experienced personnel, it would still give an inaccurate 
result. To reduce the time consumed in crowd counting and 
improve its accuracy, computer vision solutions can be 
implemented. 

Crowd detection and counting is an essential tool for 
safety and crowd surveillance such as the detection of 
unusual crowd behavior and effective deployment of police 
officers. For crowd monitoring and public transportation, 
crowd counting can be an informative resource of data in 
infrastructure development which would help a lot in 
improving the pedestrian flow, traffic congestion, and crowd 
flow in shopping malls and certain events. Also, this solution 
can be further developed to analyze complexities that involve 
the crowd by tracking and detection of unusual behavior. By 
this, dangerous situations (stampedes, suffocation, death) 
brought by overcrowding in events like parades, concerts, 
and rallies can be prevented. 

Crowd-counting algorithms, techniques, and methods 
were already contributed by lots of researchers from around 
the world. They are applied in different computer programs 
through image processing and are implemented in various 
applications. Traditional methods and algorithms, multiple 
local feature-based algorithms, and background segmentation 
techniques are some of the notable solutions for small-scale 
crowd counting. 

Traditional methods and algorithms that include head 
and face detection for crowd counting performs well in small 
scale to medium scale crowd. When it comes to a large-scale 
crowd, their accuracy drops significantly. These methods/
algorithms use multiple local features and segmentation 
techniques to count the number of people in a single image. 

Poor segmentation performance, reduced image 
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 patience and time since a single training will require lots of 
hours and even days before it can be used for image 
processing. Even so, reliable results can be obtained by this 
method which is better and feasible than conventional ways. 

Based on these studies, the researchers realized the 
possibility of solving the crowd detection and counting 
scalability problem by training models through deep learning 
and the utilization of convolutional neural networks added 
with head detection, feature detection and extraction, image 
patch division, and other crowd counting methods as a 
feasible method to detect and count individuals in a crowd by 
a trained model in Python programming language. It‟s been a 
privilege of Batangas State University – BS Electronics 
Engineering researchers to design, build, and use powerful 
open-source tools for image processing to create a crowd 
counting algorithm which is named “A Novel Multi-Scale 
Crowd Counting Algorithm Using Python (PyMCCA)”. 

 

2. Materials and methods 
This section presents the various procedures that were 

initially done for the development of a new algorithm and 
optimally achieve the research objectives. This portion serves 
as the researchers' guide throughout the entire process of 
developing a multi-scale head counting and detection in a still 
image. 

 
2.1. Predesign stage 

Through extensive research, the researchers confirmed 
the use of Python as a feasible programming language tool to 
do image processing/computer vision techniques and as the 
most optimal alternative to MATLAB considering the 
constraints and advantages. Image processing techniques can 
also be done on alternative software with their own language 
such as ImageJ, Scilab, Microsoft Visual Studio, Amira, etc. 
Their distinction lies within its cost, ease of use, minimum 
hardware specifications, and portability feature. The 
researchers came up to decide to use Python with Spyder as 
its IDE and extend its libraries to perform this study based on 
its favorable advantages when it comes to computer vision 
algorithm development, low hardware specification 
requirement, cross-platform feature, and future 
microcontroller embedding. 

The researchers believe that the optimal hardware 
requirement for the system will solely depend upon the 
application. When it comes to deep learning, having a 
computer of the best specifications will truly beneficial for 
deep learning tasks. According to Huntlaptop.com, an Intel 
Core i7 is highly recommended for machine learning or deep 
learning applications. Moreover, a dedicated GPU would be 
highly preferred to render well on projects or jobs. The 
preferred dedicated GPU series is the NVIDIA GTX 10 series 
or above. RAM Memory of 16 GB Capacity would be 
sufficient but 32 GB could also be considered if budget is not 
considered as a hindrance. 

The researchers used four different datasets to evaluate 
the performance of the algorithm. These datasets include two 
small-scale crowd datasets and two large-scale crowd 
datasets. For small-scale datasets, the researchers used the 
UCSD dataset which contains 2000 grayscale images, and 
SmartCity dataset which include 50 colored images. For large
-scale datasets, the researchers used UCF_CC_50 dataset 
which include 50 grayscale images, and ShanghaiTech Part A 
which contains 482 colored images. 

Working with Spyder as the main IDE is chosen due to 
its MATLAB-like environment. Moreover, exploring the 
variables will be at much ease. When further debugging the 
code, Jupyter Notebook will be the best alternative. A 
combination of Jupyter Notebook and Spyder is considered 
the best IDEs by the researchers since it will work well for the 
development of the research study.  

The researchers adhered to the use of Python libraries 

such as Tensorflow, Keras, pandas, matplotlib, Cython, Glob, 
lxml, numpy, open-cv, pillow, scikit-learn, and sci-py for the 
development of this study. 

 
2.2. Design stage  

The researchers wanted to have a crowd counting 
software (algorithm with GUI) with the capability to count 
from 0 to a maximum of 1000 headcounts from the chosen 
image datasets. In order to do that, the researchers studied 
image processing techniques such as CNN-based methods for 
head detection, crowd classification, image normalization, 
bilinear interpolation, image compression, density map 
generation, image patch division, one-hot encoding, GUI 
design, and counting through Tensorflow Object Detection 
API, Python programming language together with essential 
libraries. 

The study adheres to the challenge of counting at extreme 
density. The problem lies with counting every head. This is 
almost impossible due to the loss of the necessary pixels to 
detect a person in a very dense crowd. The researchers will 
tackle this problem by estimating the count of people in dense 
quantities. The method will be based on crowd analysis 
methods such as convolutional neural network, patch 
division, filtering, and final count as the final process. 

When dealing with procedures and processes, devising a 
flowchart is a helpful way to portray a logical and systematic 
approach. This part includes the algorithm flow considering 
the general methods for crowd detection. 

The devised flowchart will undergo a series of processes 
after a single input image is selected. A binary crowd 
classifier will be first initiated by the algorithm as an input 
image is selected and will implement a small-scale algorithm 
or large-scale algorithm according to its string output. Since 
the image is crowded with head samples, the image will be 

 

Figure 1. Proposed algorithm. 
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Figure 2. Design architecture. 

divided into certain divisions for counting and run inference 
for head detection for each patch. 

The head detection algorithm will then be executed by 
executing Tensorflow Object Detection API or Congested 
Scene Recognition Method. As the head samples are detected, 
the count output for every patch will be merged and will be 
printed on the designed GUI. The input image, image patches, 
and final image output with detections or density maps will 
be portrayed on the GUI.  

 
The proposed algorithm deploys the final architecture as 

shown on the figure. The Backbone that was used on the 
classifier is an Inception V3 Model with its trainable layers 
trained to perform classification with two crowd scales. For 
small-scale, the Faster R-CNN backend that was used is a 
Resnet101 Model with its trainable layers trained to detect 
heads for small-scale. For Large-scale, the backend model 
that was implemented is a VGG-16 Model together with its 
trainable layers with 3x3 filters and a 1x1 filter at the last 
layer for the detection and counting of heads. 

 
2.3. Development preparation stage 

Along with the creation of the algorithm, the researchers 
also created a functional GUI. For the creation of the 
Graphical User Interface (GUI), the Spyder Integrated 
Development was used alongside with Qt Designer (PyQt5). 
Spyder IDE is a powerful scientific environment written in 
Python. It features a unique combination of editing, analysis, 
profiling, and debugging functionality of a comprehensive 
development tool with the data exploration, deep inspection, 
interactive execution, and visualization capabilities of a 
scientific package. It offers built-in integration with many 
scientific packages including Numpy, Matplotlib, Pandas, 
Scipy, QtConsole, and many more. Furthermore, it can also 
be used as a PyQt5 extension library, which in return allows 
us to build upon its functionality and embed its components. 
Qt Designer (PyQt5) is a Qt tool for building and designing 
Graphical User Interfaces (GUIs) with Qt Widgets. In this 
module, composing and customizing windows or dialog 
boxes in a what-you-see-is-what-you-get manner and testing 
them using different resolutions and styles are possible. 
Forms and Widgets created with Qt Designer (PyQt5) 
integrate smoothly with programmed code, using Qt's slots 
mechanisms and signals so that the assignment of behavior to 
graphical elements will be easy. Furthermore, all properties 
set in PyQt5 can be changed dynamically within the code. 

The Anaconda package manager also includes Jupyter 
Notebook as a part of its package. The researchers also made 
use of this IDE since programming can be more manageable 
by its cell division run time, consuming RAM Memory at a 
time, and early detection of errors by debugging per cell. 

LabelImg is an annotation tool for graphical images. It is 
written in Python and uses Qt Designer for its graphical 

interface. It was used to label object bounding boxes in 
images. This annotation tool was used because it is easy to 
use and it is portable to any operating system. 

 
2.4. Testing stage  

The proposed crowd counting algorithm will be based on 
the chosen methods as provided on the initial flowchart. The 
tools for testing are (a) Spyder, Jupyter Notebook IDE (b) A 
computer/laptop. 

The researchers made use of density map generation will 
be essential when it comes to training the pre-trained VGG-
16 Model. The process includes the input image being 
selected at first. The ground truth will be extracted 
from .MAT files. After extraction, the extracted ground truth 
which is now in the form of an array will then be passed 
through one-hot encoding to properly place the exact 
locations of the heads. The output will then be an h5 file that 
is compatible with Keras library. 

Another important image processing technique that the 
researchers used for their methodology is normalizing the 
images for Congested Scene Recognition. It is deemed to be 
essential especially for VGG-16 Model to have normalization 
be initialized for training. The process includes the input 
image to be subtracted with the dataset mean of VGG-16 
together with its standard deviation per channel (RGB). The 
output image would then be used for running inference 
prediction. 

In this approach, the researches intended to use patch-
based inference for better detection of heads. The whole 
image-based predictions sometimes fail to count some heads 
in the image. To counter this, the researchers divided the 
images and run prediction inferences for each patch. For 
congested scene recognition, the researchers implemented a 
3x3 or 9 patches in total. 

Head and upper body features data was manually labeled 
by the researchers using LabelImg software. The annotated 
images will generate an XML file containing the position of 
heads and was converted to a CSV file to be ready for 
training. 

As the object detection algorithm generates the scores 
array, it would be squeezed to reduce its dimension. By this, 
the squeezed array will contain every detected head 
considering its threshold. The final count will be extracted.  

For the CSR Algorithm, the generated density map for 
the image input will be then converted to a numpy array. It 
will then be passed to a numpy sum method to sum the array 
of elements that will give out the final count. 

The datasets that will be used are packaged with their 
real headcounts. To determine the accuracy of the algorithm 
developed in python language, this will be compared with the 
real crowd count. To test this, input images will be extracted 
from the datasets and percent difference calculation will be 
developed to show the amount of difference with respect to 
accuracy. 

 

Figure 3. Algorithm and GUI testing plan. 
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The step-by-step procedure above for the algorithm 
testing process will be executed by the researchers. By this, 
the researchers will be able to learn more by actual prototype 
testing. Problems not anticipated in the early stage will also 
be resolved and addressed in this process. 

 
3.5. Evaluation 

The count output is the most significant data in this study 
since it will provide accuracy with the provided real 
headcounts. To evaluate the output of the designed algorithm, 
graphs and charts will be used to visually observe the 
algorithm's output with respect to varying scales. 

As provided on the objectives of this study, the 
researchers will be using MAE for the evaluation of the 
performance of the final algorithm with regards to two scales. 
There are accepted MAE values for every dataset included on 
this study as provided. 

 

4. Results and discussion  
The researches initially tried with the OS readily 

available for them to install Anaconda. In the initial phase of 
development, the researchers faced a slow run time of 
software pre-installed by Anaconda. Moreover, the 
researchers observed that good internet speed is needed when 
preparing well for the installation of the needed libraries. The 
researchers faced problems with using pip for the installation 
of packages together with conda installed packages. Also, 
they found out that it is better to install python libraries 
through conda since it also includes additional installation of 
necessary packages to install a specific library. The 
researchers then tried to install a Linux-based OS through 
dual-boot which is Ubuntu 18.04 Bionic Beaver. Installations 
were way better and observed better software run times with 
their laptops used for developing the algorithm. 

The researchers have chosen FasterR-CNN (Faster 
Region-based Convolutional Neural Network) to be used for 
detecting heads for a small-scale crowd. This algorithm 
performs very well at a high accuracy but has a tradeoff when 
it comes to speed of detection. Detection accuracy was simply 
chosen over speed to get lower MAE results. The datasets 
that were trained on this algorithm include the following 
(Table 1.) 

The researchers considered to use UCSD‟s training set to 
be trained for the small-scale algorithm. It contains images 
that were challenging to be detected by computer vision. 
Also, it contains small heads at about px by px. This would be 
desirable in counting small-scale crowd at a far or top-view 

perspective. It contains 1,200 images for training and 800 
images for testing. For transfer learning, there is a rule of 
thumb of 1,000 needed images (more or less) only. This is a 
big advantage when it comes to training time than training 
from scratch since ImageNet pre-trained models as backend 
already gives 90% and above top 1 and top 5 accuracy. 

Before the training that will be done by using the Faster-
RCNN algorithm, the researchers first annotated the small-
scale crowd images that will undergo training. Using the 
LabelImg annotation tool, the researchers created bounding 
boxes for  each individual on the cro wd images and labeled 
each of them as “head”. 

As the labeled images with their corresponding XML 
files were prepared by the researchers, the conversion of 
XML to CSV to generate its TFRecord was then initiated. 

This CSR model was used for the counting of people 
(based on density maps) on large-scale crowd images. The 
datasets that were trained on this model include the 

following: 
The researchers simply chose part A of the said dataset 

since it contains most of the annotations containing 241,667 
on the total 330,000 heads of the whole dataset. Moreover, 
the crowd is much more congested at Part A than Part B. 

For the preparation of density maps, the process 
implemented can be seen in Figure 4.  

Table 3 shows the information about the ground truth 
generation for each dataset. Both UCSD and largescale 
dataset was included for this process since the researchers 
intend to extract every ground truth value for MAE 
evaluation later on. Also, these files were needed when 
training the model to be trained on CSR. 

VGG-16 was the chosen backend by the researchers for 
Large-scale algorithm. VGG-16 has also been used by other 
researchers for analyzing and counting large-scale crowds 
due to its strong transfer learning ability. Before applying 
transfer learning and retraining VGG-16, it is needed to 
perform image normalization before deploying the model. 
The following Mean and Standard Deviation were given on 
the Table 4. 

 

 

Table 1. Faster R-CNN training setup. 

 

Table 2. CSR-based model training set-up. 

 

 

Figure 4. Density map generation process. 

Table 3. Density map generation. 
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The normalization function is called whenever input 
images are being trained. Also, it would be used when 
running the Inference prediction. This is necessary to get the 
desired prediction. If the normalization process was bypassed, 
the training for CSR-based model would considerably take 
more steps to get the desired Euclidean Distance Loss. On the 
other way around, if the normalization function was not 
included for the inference prediction of count, it would give 
poor prediction results. 

The researchers proceed to train the labeled images for 
Faster R-CNN algorithm for different models. Different 
backend models were trained for evaluation as to which 
backend model will be the best fit for our training data. These 
backend models were pre-trained on COCO dataset. COCO 
dataset consists of 330K images with 80 object and 91 stuff 
categories. The good thing about this dataset is that it 
contains 250,000 people with key points which is ideal for 
this study. Kitti dataset is another considerable dataset since it 
contains at about 30 people per image. The researchers tried 
to implement training with models at the highest maP but it 
results to resource allocation error. With this in consideration, 
the researchers were only limited to the use of backend 
models. The following Faster R-CNN backends were chosen 
due to its training feasibility. 

Training a new model from scratch would usually need 
10,000 images per class. This would consume a lot of time on 
training. Transfer learning is a chosen technique which 
enables the researchers to harness a neural network from a 
previous specific task and apply it on small crowds. By 
transfer learning, images or annotations could be reduced up 
to 1,000 samples or less. 

For the first setup, the researchers initially tried to train 
SCUT-HEAD Part B dataset and followed its training and 
testing set on Faster_RCNN_Inception_V2consideringits 
training speed. For 50,000 - 200,000 steps which is the 
sufficient limit of most of the Tensorflow Object Detection 
API models, the researchers initially trained as far as stated. 
The training result is visually analyzed through the given loss 
values using Tensorboard. 

For the first training setup, the researchers still need to 
perform more steps for training. When the model reaches 
about 0.04-0.05 loss at 647k steps, another test was initiated. 

SmartCity dataset was labeled beforehand but its image 
resolution is too big for Faster R-CNN architectures which 
has a limit mostly at 1024 x 600 image resolution. To counter 
this, the researchers tried to configure the configuration file of 
the model to increase the input size limit but it does not go 
well positively due to Resource Exhausted Error thrown 
during training. Due to this, researchers went along with 
images compatible for training Faster R-CNN model 
architectures. 

For the UCSD dataset, the researchers initially picked 
140 images with approximately 1,800-2,000 head annotations 
with training set as 112 images and testing set as 28 images. 

Provided below are the graphs of selected feasible 
models that the researchers used. Their analysis graphs are 
provided correspondingly. The values of the loss are 
downloaded from local web server localhost:6006 and their 
plots were generated using Microsoft Excel. 

The researchers have chosen ResNet101- Kitti as their 
model backend for Faster R-CNN algorithm for small-scale 
crowd detection and counting based on the training results. 

For training the CSRNet the researchers did the 

following configuration as advised on the CSRNet paper by 
Yuhong Li et. Al [7]. The dataset used for the Congested 
Scene Recognition method uses ShanghaiTech Part A which 
consists of 182 images for testing and 300 images for 
training. The corresponding configurations for training 
together with other parameters such as optimizer and 
activation function that was given by CSRNet was also 
initiated for replicating the model. 

VGG-16 was chosen due to its strong transfer learning 
ability for congested scene crowd according to [7] Another 
notable mention for this implementation is that it uses Dilated 
Convolutional Layers rather than Max Pooling Layers. The 
researchers followed this setup for training. The comparison 
result below. Shows how dilated convolution gives better 
details than the pooling procedure. 

For the training, the researchers need to make sure that 
the normalization code was also included. The final code 
implementation for training CSR-based model was then 
executed. The expected training loss for Euclidean distance 
should be at 0.07. 

After 700 steps, the researchers got the model saved as 
„model_A_weights.h5‟ which is in hdf5 format compatible 
with Keras API. A loss value of 0.0787 was also generated. It 
is worth mentioning here that on the small-scale 
implementation, a loss of 0.05 was considered for training 
FasterR-CNN on a total loss graph. For the CSR-based 
model, Euclidean distance loss was chosen to measure its 
performance with the generated ground truth density maps 
during image pre-processing. 

For the Multi-scale algorithm, there should be a classifier 
that would predict what image input is being fed into the 
algorithm. To implement this, the researchers made use of a 
Tensorflow Image Classifier based on the Inception V3 
model. The implementation was based on Tensorflow for 
Poets guide but the researchers made a lot of fine-tuning to 
get desirable classification results. For the training images, 

 

 

 

 

a) Adam training 

 

 

 

 

b) Gradient descent training 

Figure 6. Training using a) Adam and  b) gradient descent. 

Table 4. VGG-16 mean and standard deviation values. 

 

 

Figure 5. Max pooling and upsampling vs. dilation. 
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the researchers trained 182 Test Images from ShanghaiTech 
together with its training set which sums up to 482 Images 
from ShanghaiTech, 15 Images from UCF Dataset. For the 
Small-scale Image set, the researchers also trained the model 
with 1,200 Test Images from UCSD Dataset with additional 
augmentation and all SmartCity Images. The Training, 
testing, and validation set was randomly chosen by the code 
implementation by setting 80% for Training and another 20% 
for Validation. The researchers got favorable results on 
testing using this scheme which resulted to correct 
implementation of the right algorithm for each scale which 
was presented on the MAE graphs later on. The evaluation 
shows the following graphs: 

Better training accuracy and validation accuracy results 
were observed using Adam Optimizer for the Crowd 
Classifier. This was then the chosen setup for the Crowd 
Classifier model. 

Each dataset was subjected to the MAE testing as stated 
on the objectives of this study. The following result shows the 
summary of garnered MAE values for each dataset. It is 
important to note here that the final algorithm was initiated 
together with the image classifier on top of both Scale 
algorithm. 

The graph above shows how well the Small-scale 
algorithm performs with SmartCity Dataset with a total of 
0.64 Mean Absolute Error. 

For UCSD Image Dataset the researchers got an MAE of 
2.4 which is also in-lined with the objectives. The Prediction 
(blue line) shows that the evaluation had given a desirable 
plot graph with respect to the ground truth. Some minor 
misalignment of both lines was due to occlusions that are 
present on the UCSD Image Dataset which can be vividly 
visualized starting from 631 Image count. 

Since the CSR-based model was trained on 
ShanghaiTech dataset Part A with its respective train and test 
division, desirable results were expected. The prediction and 
ground truth curves show how well the whole algorithm 
correctly classified every test image for ShanghaiTech dataset 
which is considered crucial for the calculation of MAE. The 
best results were summarized in the next corresponding table.  

 

For UCF Image dataset, the researchers were able to 
generate a total MAE of 432.21 which is in-lined with the 
research objectives. This dataset as not trained with the CSR-
based model and still gives a result much better than the study 
of Idrees et. al that uses algorithms such as Fourier Analysis. 
UCF is a challenging dataset due to its maximum count of 
4600 heads on a single image. This contributes a large error if 
maximum counts were far from the predicted values. This is 
then considered as a limit of this study. 

By the graph results, the researchers found out that 
implementing Image Patch Divisions were indeed a big help 
for garnering better crowd count which leads to the 
accomplishment of the objectives of this study. The trade-off 

for this image patches is that higher computing power is 
much more needed if it needs to be applied to real-time 
applications. This is considered as this study's limitation and 
it focuses on the study of giving acceptable MAE values for 
varying crowd scale which was then achieved. 

For the creation of the GUI, the researchers first created a 
form composed of labels, pushbutton, and line edit using the 
Qt Designer (PyQt5). The objects used inside the form was 
placed using the drag-and-drop method. Furthermore, in order 
to change the properties of the objects used including text 
sizes and frames for labels, Qt designer Property Editor was 
used. 

Now, in order to improve the visual appearance of the 
form, the researchers added additional labels for them to load 
some images and texts. For the new and final appearance of 
the form, a total of twelve (12) labels, one (1) push button, 
and one (1) line edit was used. This was also done through 
the Qt designer (PyQt5) 

In order to put some functions on the objects used again, 
Spyder was used. The algorithm created by the researchers 
was also placed inside the Python code done through Spyder. 

 

Figure 7. Smart city MAE result - 0.64. 

 

Figure 8. UCSD MAE Result – 2.4. 

 

Figure 9. ShanghaiTech  MAE result – 69.42. 

 

Figure 10. UCF MAE Result – 432.21. 
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To make the algorithm executable, PyInstaller was used. 
PyInstaller takes the python code for the algorithm and byte-
compiles it. It creates an executable application that basically 
loads and runs the algorithm and analyzes the code to 
discover every other module and library that the algorithm 
needs in order to execute. 

 

4. Conclusion 
The researchers were able to develop a multi-scale crowd 

counting algorithm by implementing three deep convolutional 
neural networks, namely: InceptionV3, ResNet101, and VGG
-16. InceptionV3 was used as the image classifier, classifying 
whether the input is an image with a small-scale crowd or a 
large-scale crowd. ResNet101 was used for Faster-RCNN for 
object detection which the researchers have proven to be 
effective on small-scale crowds. Lastly, VGG-16 which was 
used as the backbone for the CSR-based model which was 
proven to be effective on large crowds. The researchers have 
proven this type of algorithm to be effective in counting 
crowds with different scales. 

A Graphical User Interface was done by the researchers 
for easier implementation of the algorithm. The GUI provides 
less work on running the program and keeps the program 
codes safe from unintentional alterations. Implementing the 
program on a GUI does not vary the behavior of the 
algorithm. 

The algorithm was able to perform on the standards set 
by the researchers based on the minimum accepted values of 
MAE in different datasets. The developed multi-scale crowd 
counting algorithm has achieved the following MAE upon 
evaluation: 

 
PyMCCA Performance: 
Small-Scale MAE: 
UCSD Image Dataset – 2.4 

SmartCity Image Dataset – 0.64 

Large-Scale MAE: 
UCF_CC_50 Dataset – 432.21 
Shanghai Tech Part A Image Dataset – 69.42 
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Figure 11. Implementation on small-scale. 

 

Figure 12. Implementation on large-scale. 
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