

ABSTRACT
This research was conducted to create a Multi-Scale Crowd Counting Algorithm. This algorithm implements a patch-based
inference that is able to give the number of people in an image whether the image contain a small or large crowd size. The
algorithm was designed to perform within the standard of the existing small scale and large- scale crowd counting algorithms
using Convolutional Neural Network Architectures such as Inception V3 for the crowd classifier, Resnet101 for the small-scale
model, and VGG-16 for the large-scale model. This algorithm was implemented along with a user interface using PyQt5 GUI
designer to make it more convenient to use. The algorithm works by identifying whether an image contains a small or large
crowd, then implements a model best suited for the image. If the image is determined to contain small amount crowd, the image
will be divided into 4 patches then a Faster R-CNN model trained on human head and body annotations will be implemented,
while if the image contains a large number of crowd, the image will be divide into 9 patches then an inference algorithm based
on CSR model will be implemented.

Keywords: Convolutional Neural Networks, Crowd Counting, Faster R-CNN, CSR model

A novel multi-scale crowd counting algorithm using python (PyMCCA)

Janice Peralta, Ian Benedict O. Aguila, Paul C. Atienza, Joseph Jeremy B. Botardo

College of Engineering, Architecture, and Fine Arts, Electronics-Instrumentation and Control-Mechatronics Engineering
Department, Batangas State University

resolution, and erroneous ground truth labeling. [1]
Background segmentation focuses on the foreground and
removes the background of an image to extract the target or
blob and be counted. On the other hand, foreground
segmentation focuses on the background and removes the
foreground of a specific image. The problem with these
techniques is that if applied to a larger crowd, they were
unable to detect every single sample in an extremely
compressed crowd. They cannot undergo processing for
sample overlapping.

Crowd counting is an important research topic in the
field of computer vision but the accuracy of crowd counting
based still needs to be improved. [2] The problem lies within
the accuracy, scalability, and practicality of these algorithms
when dealing with a larger crowd scope. Researchers have
already identified the problem in terms of large-scale crowd
counting on still images. The notable challenges to a large-
scale counting are: Low Resolution (few pixels per target)
which makes the analysis difficult, Severe Occlusion wherein
body parts are not visible, and Perspective Effects or the
change in scale.

Throughout the years, researchers have found a way to
gradually improve large-scale crowd counting methods.
Idrees et. al [3] have proposed a method that includes interest
point based counting, Fourier analysis, head detection, and
Markov random field. They were successful in accurately
estimating crowd counts at densities up to about 1,280 people
using the UCF_CC_50 image dataset but, unfortunately, their
design gave inaccurate results in counting small-scale crowd.
Since then, the scalability of the crowd is still a challenge up
until today. Due to the improvement of crowd counting
studies nowadays, present methods were now using Deep
Learning to address the dense crowd counting challenges.
Zhang et. al [4], Boomingthan et. al [5], and Sam et. al [6]
have used deep learning through convolutional neural
networks to provide better accuracy but focused on detection
and counting in large crowd densities.

A notable strength of deep learning is that it can be
trained well so it can be able to detect unseen humans in a
crowd. If trained well, desired results can be obtained. A
downside of this technique is that it will require a lot of

IRJIEST 5 (2019) 23-29

Available online at http://irjiest.com.ph

*Corresponding author
Email address: janice.peralta@g.batstate-u.edu.ph

1. Introduction
Crowds occur every day in situations like rallies,

concerts, political speeches, stadiums, and even marathons.
They are an important aspect and need to be considered in
terms of public safety, public transportation, and the correct
establishment of news or data for media. Counting every
individual in the crowd manually would need a lot of time
and effort, and it could almost be impossible. Although the
number of people at an event can be estimated by some
experienced personnel, it would still give an inaccurate
result. To reduce the time consumed in crowd counting and
improve its accuracy, computer vision solutions can be
implemented.

Crowd detection and counting is an essential tool for
safety and crowd surveillance such as the detection of
unusual crowd behavior and effective deployment of police
officers. For crowd monitoring and public transportation,
crowd counting can be an informative resource of data in
infrastructure development which would help a lot in
improving the pedestrian flow, traffic congestion, and crowd
flow in shopping malls and certain events. Also, this solution
can be further developed to analyze complexities that involve
the crowd by tracking and detection of unusual behavior. By
this, dangerous situations (stampedes, suffocation, death)
brought by overcrowding in events like parades, concerts,
and rallies can be prevented.

Crowd-counting algorithms, techniques, and methods
were already contributed by lots of researchers from around
the world. They are applied in different computer programs
through image processing and are implemented in various
applications. Traditional methods and algorithms, multiple
local feature-based algorithms, and background segmentation
techniques are some of the notable solutions for small-scale
crowd counting.

Traditional methods and algorithms that include head
and face detection for crowd counting performs well in small
scale to medium scale crowd. When it comes to a large-scale
crowd, their accuracy drops significantly. These methods/
algorithms use multiple local features and segmentation
techniques to count the number of people in a single image.

Poor segmentation performance, reduced image

http://irjiest.com.ph
mailto:janice.peralta@g.batstate-u.edu.ph

 patience and time since a single training will require lots of
hours and even days before it can be used for image
processing. Even so, reliable results can be obtained by this
method which is better and feasible than conventional ways.

Based on these studies, the researchers realized the
possibility of solving the crowd detection and counting
scalability problem by training models through deep learning
and the utilization of convolutional neural networks added
with head detection, feature detection and extraction, image
patch division, and other crowd counting methods as a
feasible method to detect and count individuals in a crowd by
a trained model in Python programming language. It‟s been a
privilege of Batangas State University – BS Electronics
Engineering researchers to design, build, and use powerful
open-source tools for image processing to create a crowd
counting algorithm which is named “A Novel Multi-Scale
Crowd Counting Algorithm Using Python (PyMCCA)”.

2. Materials and methods
This section presents the various procedures that were

initially done for the development of a new algorithm and
optimally achieve the research objectives. This portion serves
as the researchers' guide throughout the entire process of
developing a multi-scale head counting and detection in a still
image.

2.1. Predesign stage

Through extensive research, the researchers confirmed
the use of Python as a feasible programming language tool to
do image processing/computer vision techniques and as the
most optimal alternative to MATLAB considering the
constraints and advantages. Image processing techniques can
also be done on alternative software with their own language
such as ImageJ, Scilab, Microsoft Visual Studio, Amira, etc.
Their distinction lies within its cost, ease of use, minimum
hardware specifications, and portability feature. The
researchers came up to decide to use Python with Spyder as
its IDE and extend its libraries to perform this study based on
its favorable advantages when it comes to computer vision
algorithm development, low hardware specification
requirement, cross-platform feature, and future
microcontroller embedding.

The researchers believe that the optimal hardware
requirement for the system will solely depend upon the
application. When it comes to deep learning, having a
computer of the best specifications will truly beneficial for
deep learning tasks. According to Huntlaptop.com, an Intel
Core i7 is highly recommended for machine learning or deep
learning applications. Moreover, a dedicated GPU would be
highly preferred to render well on projects or jobs. The
preferred dedicated GPU series is the NVIDIA GTX 10 series
or above. RAM Memory of 16 GB Capacity would be
sufficient but 32 GB could also be considered if budget is not
considered as a hindrance.

The researchers used four different datasets to evaluate
the performance of the algorithm. These datasets include two
small-scale crowd datasets and two large-scale crowd
datasets. For small-scale datasets, the researchers used the
UCSD dataset which contains 2000 grayscale images, and
SmartCity dataset which include 50 colored images. For large
-scale datasets, the researchers used UCF_CC_50 dataset
which include 50 grayscale images, and ShanghaiTech Part A
which contains 482 colored images.

Working with Spyder as the main IDE is chosen due to
its MATLAB-like environment. Moreover, exploring the
variables will be at much ease. When further debugging the
code, Jupyter Notebook will be the best alternative. A
combination of Jupyter Notebook and Spyder is considered
the best IDEs by the researchers since it will work well for the
development of the research study.

The researchers adhered to the use of Python libraries

such as Tensorflow, Keras, pandas, matplotlib, Cython, Glob,
lxml, numpy, open-cv, pillow, scikit-learn, and sci-py for the
development of this study.

2.2. Design stage

The researchers wanted to have a crowd counting
software (algorithm with GUI) with the capability to count
from 0 to a maximum of 1000 headcounts from the chosen
image datasets. In order to do that, the researchers studied
image processing techniques such as CNN-based methods for
head detection, crowd classification, image normalization,
bilinear interpolation, image compression, density map
generation, image patch division, one-hot encoding, GUI
design, and counting through Tensorflow Object Detection
API, Python programming language together with essential
libraries.

The study adheres to the challenge of counting at extreme
density. The problem lies with counting every head. This is
almost impossible due to the loss of the necessary pixels to
detect a person in a very dense crowd. The researchers will
tackle this problem by estimating the count of people in dense
quantities. The method will be based on crowd analysis
methods such as convolutional neural network, patch
division, filtering, and final count as the final process.

When dealing with procedures and processes, devising a
flowchart is a helpful way to portray a logical and systematic
approach. This part includes the algorithm flow considering
the general methods for crowd detection.

The devised flowchart will undergo a series of processes
after a single input image is selected. A binary crowd
classifier will be first initiated by the algorithm as an input
image is selected and will implement a small-scale algorithm
or large-scale algorithm according to its string output. Since
the image is crowded with head samples, the image will be

Figure 1. Proposed algorithm.

Peralta et al. / IRJIEST 5 (2019) 23-29

24

Figure 2. Design architecture.

divided into certain divisions for counting and run inference
for head detection for each patch.

The head detection algorithm will then be executed by
executing Tensorflow Object Detection API or Congested
Scene Recognition Method. As the head samples are detected,
the count output for every patch will be merged and will be
printed on the designed GUI. The input image, image patches,
and final image output with detections or density maps will
be portrayed on the GUI.

The proposed algorithm deploys the final architecture as

shown on the figure. The Backbone that was used on the
classifier is an Inception V3 Model with its trainable layers
trained to perform classification with two crowd scales. For
small-scale, the Faster R-CNN backend that was used is a
Resnet101 Model with its trainable layers trained to detect
heads for small-scale. For Large-scale, the backend model
that was implemented is a VGG-16 Model together with its
trainable layers with 3x3 filters and a 1x1 filter at the last
layer for the detection and counting of heads.

2.3. Development preparation stage

Along with the creation of the algorithm, the researchers
also created a functional GUI. For the creation of the
Graphical User Interface (GUI), the Spyder Integrated
Development was used alongside with Qt Designer (PyQt5).
Spyder IDE is a powerful scientific environment written in
Python. It features a unique combination of editing, analysis,
profiling, and debugging functionality of a comprehensive
development tool with the data exploration, deep inspection,
interactive execution, and visualization capabilities of a
scientific package. It offers built-in integration with many
scientific packages including Numpy, Matplotlib, Pandas,
Scipy, QtConsole, and many more. Furthermore, it can also
be used as a PyQt5 extension library, which in return allows
us to build upon its functionality and embed its components.
Qt Designer (PyQt5) is a Qt tool for building and designing
Graphical User Interfaces (GUIs) with Qt Widgets. In this
module, composing and customizing windows or dialog
boxes in a what-you-see-is-what-you-get manner and testing
them using different resolutions and styles are possible.
Forms and Widgets created with Qt Designer (PyQt5)
integrate smoothly with programmed code, using Qt's slots
mechanisms and signals so that the assignment of behavior to
graphical elements will be easy. Furthermore, all properties
set in PyQt5 can be changed dynamically within the code.

The Anaconda package manager also includes Jupyter
Notebook as a part of its package. The researchers also made
use of this IDE since programming can be more manageable
by its cell division run time, consuming RAM Memory at a
time, and early detection of errors by debugging per cell.

LabelImg is an annotation tool for graphical images. It is
written in Python and uses Qt Designer for its graphical

interface. It was used to label object bounding boxes in
images. This annotation tool was used because it is easy to
use and it is portable to any operating system.

2.4. Testing stage

The proposed crowd counting algorithm will be based on
the chosen methods as provided on the initial flowchart. The
tools for testing are (a) Spyder, Jupyter Notebook IDE (b) A
computer/laptop.

The researchers made use of density map generation will
be essential when it comes to training the pre-trained VGG-
16 Model. The process includes the input image being
selected at first. The ground truth will be extracted
from .MAT files. After extraction, the extracted ground truth
which is now in the form of an array will then be passed
through one-hot encoding to properly place the exact
locations of the heads. The output will then be an h5 file that
is compatible with Keras library.

Another important image processing technique that the
researchers used for their methodology is normalizing the
images for Congested Scene Recognition. It is deemed to be
essential especially for VGG-16 Model to have normalization
be initialized for training. The process includes the input
image to be subtracted with the dataset mean of VGG-16
together with its standard deviation per channel (RGB). The
output image would then be used for running inference
prediction.

In this approach, the researches intended to use patch-
based inference for better detection of heads. The whole
image-based predictions sometimes fail to count some heads
in the image. To counter this, the researchers divided the
images and run prediction inferences for each patch. For
congested scene recognition, the researchers implemented a
3x3 or 9 patches in total.

Head and upper body features data was manually labeled
by the researchers using LabelImg software. The annotated
images will generate an XML file containing the position of
heads and was converted to a CSV file to be ready for
training.

As the object detection algorithm generates the scores
array, it would be squeezed to reduce its dimension. By this,
the squeezed array will contain every detected head
considering its threshold. The final count will be extracted.

For the CSR Algorithm, the generated density map for
the image input will be then converted to a numpy array. It
will then be passed to a numpy sum method to sum the array
of elements that will give out the final count.

The datasets that will be used are packaged with their
real headcounts. To determine the accuracy of the algorithm
developed in python language, this will be compared with the
real crowd count. To test this, input images will be extracted
from the datasets and percent difference calculation will be
developed to show the amount of difference with respect to
accuracy.

Figure 3. Algorithm and GUI testing plan.

Peralta et al. / IRJIEST 5 (2019) 23-29

25

The step-by-step procedure above for the algorithm
testing process will be executed by the researchers. By this,
the researchers will be able to learn more by actual prototype
testing. Problems not anticipated in the early stage will also
be resolved and addressed in this process.

3.5. Evaluation

The count output is the most significant data in this study
since it will provide accuracy with the provided real
headcounts. To evaluate the output of the designed algorithm,
graphs and charts will be used to visually observe the
algorithm's output with respect to varying scales.

As provided on the objectives of this study, the
researchers will be using MAE for the evaluation of the
performance of the final algorithm with regards to two scales.
There are accepted MAE values for every dataset included on
this study as provided.

4. Results and discussion
The researches initially tried with the OS readily

available for them to install Anaconda. In the initial phase of
development, the researchers faced a slow run time of
software pre-installed by Anaconda. Moreover, the
researchers observed that good internet speed is needed when
preparing well for the installation of the needed libraries. The
researchers faced problems with using pip for the installation
of packages together with conda installed packages. Also,
they found out that it is better to install python libraries
through conda since it also includes additional installation of
necessary packages to install a specific library. The
researchers then tried to install a Linux-based OS through
dual-boot which is Ubuntu 18.04 Bionic Beaver. Installations
were way better and observed better software run times with
their laptops used for developing the algorithm.

The researchers have chosen FasterR-CNN (Faster
Region-based Convolutional Neural Network) to be used for
detecting heads for a small-scale crowd. This algorithm
performs very well at a high accuracy but has a tradeoff when
it comes to speed of detection. Detection accuracy was simply
chosen over speed to get lower MAE results. The datasets
that were trained on this algorithm include the following
(Table 1.)

The researchers considered to use UCSD‟s training set to
be trained for the small-scale algorithm. It contains images
that were challenging to be detected by computer vision.
Also, it contains small heads at about px by px. This would be
desirable in counting small-scale crowd at a far or top-view

perspective. It contains 1,200 images for training and 800
images for testing. For transfer learning, there is a rule of
thumb of 1,000 needed images (more or less) only. This is a
big advantage when it comes to training time than training
from scratch since ImageNet pre-trained models as backend
already gives 90% and above top 1 and top 5 accuracy.

Before the training that will be done by using the Faster-
RCNN algorithm, the researchers first annotated the small-
scale crowd images that will undergo training. Using the
LabelImg annotation tool, the researchers created bounding
boxes for each individual on the cro wd images and labeled
each of them as “head”.

As the labeled images with their corresponding XML
files were prepared by the researchers, the conversion of
XML to CSV to generate its TFRecord was then initiated.

This CSR model was used for the counting of people
(based on density maps) on large-scale crowd images. The
datasets that were trained on this model include the

following:
The researchers simply chose part A of the said dataset

since it contains most of the annotations containing 241,667
on the total 330,000 heads of the whole dataset. Moreover,
the crowd is much more congested at Part A than Part B.

For the preparation of density maps, the process
implemented can be seen in Figure 4.

Table 3 shows the information about the ground truth
generation for each dataset. Both UCSD and largescale
dataset was included for this process since the researchers
intend to extract every ground truth value for MAE
evaluation later on. Also, these files were needed when
training the model to be trained on CSR.

VGG-16 was the chosen backend by the researchers for
Large-scale algorithm. VGG-16 has also been used by other
researchers for analyzing and counting large-scale crowds
due to its strong transfer learning ability. Before applying
transfer learning and retraining VGG-16, it is needed to
perform image normalization before deploying the model.
The following Mean and Standard Deviation were given on
the Table 4.

Table 1. Faster R-CNN training setup.

Table 2. CSR-based model training set-up.

Figure 4. Density map generation process.

Table 3. Density map generation.

Peralta et al. / IRJIEST 5 (2019) 23-29

26

The normalization function is called whenever input
images are being trained. Also, it would be used when
running the Inference prediction. This is necessary to get the
desired prediction. If the normalization process was bypassed,
the training for CSR-based model would considerably take
more steps to get the desired Euclidean Distance Loss. On the
other way around, if the normalization function was not
included for the inference prediction of count, it would give
poor prediction results.

The researchers proceed to train the labeled images for
Faster R-CNN algorithm for different models. Different
backend models were trained for evaluation as to which
backend model will be the best fit for our training data. These
backend models were pre-trained on COCO dataset. COCO
dataset consists of 330K images with 80 object and 91 stuff
categories. The good thing about this dataset is that it
contains 250,000 people with key points which is ideal for
this study. Kitti dataset is another considerable dataset since it
contains at about 30 people per image. The researchers tried
to implement training with models at the highest maP but it
results to resource allocation error. With this in consideration,
the researchers were only limited to the use of backend
models. The following Faster R-CNN backends were chosen
due to its training feasibility.

Training a new model from scratch would usually need
10,000 images per class. This would consume a lot of time on
training. Transfer learning is a chosen technique which
enables the researchers to harness a neural network from a
previous specific task and apply it on small crowds. By
transfer learning, images or annotations could be reduced up
to 1,000 samples or less.

For the first setup, the researchers initially tried to train
SCUT-HEAD Part B dataset and followed its training and
testing set on Faster_RCNN_Inception_V2consideringits
training speed. For 50,000 - 200,000 steps which is the
sufficient limit of most of the Tensorflow Object Detection
API models, the researchers initially trained as far as stated.
The training result is visually analyzed through the given loss
values using Tensorboard.

For the first training setup, the researchers still need to
perform more steps for training. When the model reaches
about 0.04-0.05 loss at 647k steps, another test was initiated.

SmartCity dataset was labeled beforehand but its image
resolution is too big for Faster R-CNN architectures which
has a limit mostly at 1024 x 600 image resolution. To counter
this, the researchers tried to configure the configuration file of
the model to increase the input size limit but it does not go
well positively due to Resource Exhausted Error thrown
during training. Due to this, researchers went along with
images compatible for training Faster R-CNN model
architectures.

For the UCSD dataset, the researchers initially picked
140 images with approximately 1,800-2,000 head annotations
with training set as 112 images and testing set as 28 images.

Provided below are the graphs of selected feasible
models that the researchers used. Their analysis graphs are
provided correspondingly. The values of the loss are
downloaded from local web server localhost:6006 and their
plots were generated using Microsoft Excel.

The researchers have chosen ResNet101- Kitti as their
model backend for Faster R-CNN algorithm for small-scale
crowd detection and counting based on the training results.

For training the CSRNet the researchers did the

following configuration as advised on the CSRNet paper by
Yuhong Li et. Al [7]. The dataset used for the Congested
Scene Recognition method uses ShanghaiTech Part A which
consists of 182 images for testing and 300 images for
training. The corresponding configurations for training
together with other parameters such as optimizer and
activation function that was given by CSRNet was also
initiated for replicating the model.

VGG-16 was chosen due to its strong transfer learning
ability for congested scene crowd according to [7] Another
notable mention for this implementation is that it uses Dilated
Convolutional Layers rather than Max Pooling Layers. The
researchers followed this setup for training. The comparison
result below. Shows how dilated convolution gives better
details than the pooling procedure.

For the training, the researchers need to make sure that
the normalization code was also included. The final code
implementation for training CSR-based model was then
executed. The expected training loss for Euclidean distance
should be at 0.07.

After 700 steps, the researchers got the model saved as
„model_A_weights.h5‟ which is in hdf5 format compatible
with Keras API. A loss value of 0.0787 was also generated. It
is worth mentioning here that on the small-scale
implementation, a loss of 0.05 was considered for training
FasterR-CNN on a total loss graph. For the CSR-based
model, Euclidean distance loss was chosen to measure its
performance with the generated ground truth density maps
during image pre-processing.

For the Multi-scale algorithm, there should be a classifier
that would predict what image input is being fed into the
algorithm. To implement this, the researchers made use of a
Tensorflow Image Classifier based on the Inception V3
model. The implementation was based on Tensorflow for
Poets guide but the researchers made a lot of fine-tuning to
get desirable classification results. For the training images,

a) Adam training

b) Gradient descent training

Figure 6. Training using a) Adam and b) gradient descent.

Table 4. VGG-16 mean and standard deviation values.

Figure 5. Max pooling and upsampling vs. dilation.

Peralta et al. / IRJIEST 5 (2019) 23-29

27

the researchers trained 182 Test Images from ShanghaiTech
together with its training set which sums up to 482 Images
from ShanghaiTech, 15 Images from UCF Dataset. For the
Small-scale Image set, the researchers also trained the model
with 1,200 Test Images from UCSD Dataset with additional
augmentation and all SmartCity Images. The Training,
testing, and validation set was randomly chosen by the code
implementation by setting 80% for Training and another 20%
for Validation. The researchers got favorable results on
testing using this scheme which resulted to correct
implementation of the right algorithm for each scale which
was presented on the MAE graphs later on. The evaluation
shows the following graphs:

Better training accuracy and validation accuracy results
were observed using Adam Optimizer for the Crowd
Classifier. This was then the chosen setup for the Crowd
Classifier model.

Each dataset was subjected to the MAE testing as stated
on the objectives of this study. The following result shows the
summary of garnered MAE values for each dataset. It is
important to note here that the final algorithm was initiated
together with the image classifier on top of both Scale
algorithm.

The graph above shows how well the Small-scale
algorithm performs with SmartCity Dataset with a total of
0.64 Mean Absolute Error.

For UCSD Image Dataset the researchers got an MAE of
2.4 which is also in-lined with the objectives. The Prediction
(blue line) shows that the evaluation had given a desirable
plot graph with respect to the ground truth. Some minor
misalignment of both lines was due to occlusions that are
present on the UCSD Image Dataset which can be vividly
visualized starting from 631 Image count.

Since the CSR-based model was trained on
ShanghaiTech dataset Part A with its respective train and test
division, desirable results were expected. The prediction and
ground truth curves show how well the whole algorithm
correctly classified every test image for ShanghaiTech dataset
which is considered crucial for the calculation of MAE. The
best results were summarized in the next corresponding table.

For UCF Image dataset, the researchers were able to
generate a total MAE of 432.21 which is in-lined with the
research objectives. This dataset as not trained with the CSR-
based model and still gives a result much better than the study
of Idrees et. al that uses algorithms such as Fourier Analysis.
UCF is a challenging dataset due to its maximum count of
4600 heads on a single image. This contributes a large error if
maximum counts were far from the predicted values. This is
then considered as a limit of this study.

By the graph results, the researchers found out that
implementing Image Patch Divisions were indeed a big help
for garnering better crowd count which leads to the
accomplishment of the objectives of this study. The trade-off

for this image patches is that higher computing power is
much more needed if it needs to be applied to real-time
applications. This is considered as this study's limitation and
it focuses on the study of giving acceptable MAE values for
varying crowd scale which was then achieved.

For the creation of the GUI, the researchers first created a
form composed of labels, pushbutton, and line edit using the
Qt Designer (PyQt5). The objects used inside the form was
placed using the drag-and-drop method. Furthermore, in order
to change the properties of the objects used including text
sizes and frames for labels, Qt designer Property Editor was
used.

Now, in order to improve the visual appearance of the
form, the researchers added additional labels for them to load
some images and texts. For the new and final appearance of
the form, a total of twelve (12) labels, one (1) push button,
and one (1) line edit was used. This was also done through
the Qt designer (PyQt5)

In order to put some functions on the objects used again,
Spyder was used. The algorithm created by the researchers
was also placed inside the Python code done through Spyder.

Figure 7. Smart city MAE result - 0.64.

Figure 8. UCSD MAE Result – 2.4.

Figure 9. ShanghaiTech MAE result – 69.42.

Figure 10. UCF MAE Result – 432.21.

Peralta et al. / IRJIEST 5 (2019) 23-29

28

To make the algorithm executable, PyInstaller was used.
PyInstaller takes the python code for the algorithm and byte-
compiles it. It creates an executable application that basically
loads and runs the algorithm and analyzes the code to
discover every other module and library that the algorithm
needs in order to execute.

4. Conclusion
The researchers were able to develop a multi-scale crowd

counting algorithm by implementing three deep convolutional
neural networks, namely: InceptionV3, ResNet101, and VGG
-16. InceptionV3 was used as the image classifier, classifying
whether the input is an image with a small-scale crowd or a
large-scale crowd. ResNet101 was used for Faster-RCNN for
object detection which the researchers have proven to be
effective on small-scale crowds. Lastly, VGG-16 which was
used as the backbone for the CSR-based model which was
proven to be effective on large crowds. The researchers have
proven this type of algorithm to be effective in counting
crowds with different scales.

A Graphical User Interface was done by the researchers
for easier implementation of the algorithm. The GUI provides
less work on running the program and keeps the program
codes safe from unintentional alterations. Implementing the
program on a GUI does not vary the behavior of the
algorithm.

The algorithm was able to perform on the standards set
by the researchers based on the minimum accepted values of
MAE in different datasets. The developed multi-scale crowd
counting algorithm has achieved the following MAE upon
evaluation:

PyMCCA Performance:
Small-Scale MAE:
UCSD Image Dataset – 2.4

SmartCity Image Dataset – 0.64

Large-Scale MAE:
UCF_CC_50 Dataset – 432.21
Shanghai Tech Part A Image Dataset – 69.42

References
[1] Taran, V., Gordienko, Y, et.al. (2018), Impact of Ground
Truth Annotation Quality on Performance of Semantic Image
Segmentation of Traffic Conditions.
[2] Z. Liu, Y. Chen, B. Chen, L. Zhu, D. Wu and G. Shen,
Crowd Counting Method Based on Convolutional Neural
Network With Global Density Feature, in IEEE Access, vol.
7, pp. 88789-88798, 2019, doi: 10.1109/
ACCESS.2019.2926881.
[3] Idrees, H., Saleemi, I., Seibert, C., Shah, M. (2013). Multi
-Source Multi-Scale Counting in Extremely Dense Crowd
Images.
[4] Zhang, L., Shi, M., Chen, Q. (2018). Crowd counting via
scale-adaptive convolutional neural network.
[5] Boominathan, L., et. al. (2016). CrowdNet: A Deep
Convolutional Network for Dense Crowd Counting.
[6] Sam, D. B., Surya, S., Babu, R. V. (2017). Switching
Convolutional Neural Network for Crowd Counting.
[7] Li, Y., Zhang, X., Chen, D. (2018). CSRNet: Dilated
Convolutional Neural Networks for Understanding the Highly
Congested Scenes (UnpubDoctoral Dissertation, University of
Illinois).

Data Sets
Crowd Counting Data Set (UCF-CC-50). https://
www.crcv.ucf.edu/data/ucf-cc-50/
USCD Crowd dataset. http://visal.cs.cityu.edu.hk/downloads/
Smartcity Datate. https://pan.baidu.com/s/1pMuGyNp#list/
path=%2F
ShanghaiTech Part A. https://www.kaggle.com/tthien/
shanghaitech

Figure 11. Implementation on small-scale.

Figure 12. Implementation on large-scale.

Peralta et al. / IRJIEST 5 (2019) 23-29

29

