
 

  

 

ABSTRACT 

A crux component in crop health monitoring is the morphological characterization that directly manifests the plant response to 

the environment and farm inputs like fertilizers and pesticides. A healthy plant presents firm leaves, well-developed flowers, 

fruits, and a root system. Leaf count, color, and canopy coverage can help characterize general crop health. In this study, an 

aerial drone is allowed to traverse an optimal path plan while positioned near an area of interest where several overhead images 

of crops are captured. The total collected aerial images count to 1,918 which is divided into training and testing sets with a 70:30 

distribution ratio. From these aerial images, coffee seedlings are detected from the background, weeds, and other crops in the 

field using the VGG-16 model trained to recognize coffee seedlings. Once localized, leaf counting is performed using 

segmentation, while the canopy coverage estimation uses a patch-based DNN model to calculate the relative coverage 

concerning the overhead leaf area. Since leaf color extracted from an RGB image is very much affected by ambient light, 

normalization using an enhanced Triangular Greenness Index (eTGI) is implemented. The estimation results of the system 

reached up to 91.48% accuracy, 92.52% precision, and 93.82% recall for detecting coffee seedlings while the Mean Absolute 

Percentage Error (MAPE) for leaf count and canopy coverage of 11.61% and 15.67% respectively. For future work, the leaf 

color can be correlated to chlorophyll and percent nitrogen measurements which will require specialized instruments for 

validation.  Estimation of chlorophyll and percent nitrogen is vital in identifying the amount and type of fertilizers to be applied.  
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real-time data on soil, weather, and crop conditions. This data

-driven approach optimizes resource utilization and improves 

productivity. For example, automated irrigation systems 

leveraging IoT sensors have demonstrated substantial water 

savings while maintaining crop yield [10]. IoT-based 

monitoring systems have also proven effective in pest 

management and disease control [11,12]. 

Advancements in agricultural technologies have 

significantly contributed to sustainability by reducing 

resource wastage and environmental degradation. Remote 

sensing combined with ML has been pivotal in mapping and 

mitigating the impacts of climate change on agriculture [13]. 

Furthermore, studies have highlighted the role of these 

technologies in promoting carbon sequestration and reducing 

greenhouse gas emissions through optimized farming 

practices [14,15]. 

Despite all these developments, challenges about data 

heterogeneity, lack of standardization, and high 

implementation costs arise and persist. These challenges are 

likely to be solved through interdisciplinary collaboration and 

the development of user-friendly tools. Future research should 

focus on the integration of blockchain for data security and 

the use of edge computing in real-time analysis, especially 

within resource-constrained environments [16,17]. 

To address these problems, this study aims to develop a 

phenotyping system for aerial images of coffee trees using 

machine vision. An unmanned aerial vehicle (UAV) is used 

for data acquisition. UAV is one of the emerging instruments 

used in precision agriculture, particularly data acquisition for 

1. Introduction  

The integration of emerging technologies such as 

machine learning, the Internet of Things (IoT), and advanced 

remote sensing techniques has revolutionized precision 

agriculture. Remote sensing plays a pivotal role in precision 

agriculture by providing high-resolution data for crop health 

monitoring and land use assessment. For instance, 

hyperspectral imaging has demonstrated its capability to 

assess crop conditions and detect diseases [1,2]. Recent 

studies have emphasized the role of multispectral and thermal 

imagery in estimating evapotranspiration and soil moisture 

levels, critical for irrigation management [3,4]. The 

advancements in satellite-based remote sensing, including 

sensors like Sentinel-2, enable large-scale monitoring, 

providing cost-effective solutions for farmers [5]. 

Machine learning (ML) is increasingly employed to 

analyze complex agricultural datasets. Techniques such as 

convolutional neural networks (CNNs) have shown high 

accuracy in crop classification and disease detection using 

remote sensing data [6,7]. Studies have also explored the 

potential of ML algorithms for yield prediction, leveraging 

both environmental and historical yield data [8]. Integrating 

ML with remote sensing can significantly enhance predictive 

capabilities, enabling real-time decision-making [9]. 

The IoT paradigm has facilitated the development of 

smart farming systems, where interconnected devices collect 
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plant phenotyping [18]. The phenotyping system is 

implemented on a personal computer or laptop to extract the 

morphological attributes of leaf count, level of greenness, and 

canopy coverage of the coffee trees. To characterize and 

extract the morphological attributes, the dataset gathered is 

fed to the machine vision algorithms. Machine learning 

algorithms and image processing techniques are implied and 

primarily associated with precision agriculture application 

techniques for developing innovative plant phenotyping tools 

[19]. Further, the study intends to use advanced methods 

instead of manual field measurements to improve coffee crop 

management and decision-making.  

 

2.  Materials and methods 

This part presents the methods used by the proponents to 

achieve the research objectives and standards. In the first 

section, a description of how the data collection was 

performed, and some practical details about the data 

collection are presented. The second section presents the 

practical details about the detector, selected methods, and 

their parameters. In the final section, the evaluation methods 

are presented. 

 

2.1. Data acquisition 

A dataset has been created by collecting aerial images 

and videos of coffee trees. The researchers started to collect 

data in September 2021 to April 2022. The data gathering 

was held in the Pueblo Farm in Rosario, Batangas, which has 

a field area of 5000 sq. meters. Aerial images of coffee trees 

were captured with a single-camera drone wherein the flying 

height was 5 meters above the field. This UAV is equipped 

with 2375 mAh intelligent flight battery capacity and a 

camera system consisting of a sensor (1/2.3” CMOS), 3-axis 

image stabilizer, 4K Ultra HD: 3840×2160 24/25/30p, with a 

lens of 85° field of view (FOV), 35 mm format equivalent: 24 

mm and an effective pixel of 12 MP. Figure 1 shows the 

illustration of the flight height and how the researchers 

captured the coffee trees using UAV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flying height of the drone from the ground.  

 

The researchers selected usable images from the photos 

taken using the control app for the UAV used. The research 

data consisted of a total of 1,918 images. To train and 

evaluate the model to be used in object detection, different 

sets for training and testing were needed. In line with this, the 

dataset was divided into two sets: training and testing with a 

70:30 ratio, where 1343 images are used for training, and the 

remaining 575 are used for testing. To achieve a balanced 

dataset, the photos of coffee tree seedlings are matched with 

background noises of leaves, grasses, and the ground in a 50-

50 ratio. Figure 2 shows that images with coffee trees are 

positive (a), and images that only contain background noises 

are negative (b). 

Figure 2. Sample images showing the presence of coffee 

trees: (a) positive and (b) negative.  

 

2.2. Ground truthing 

The researchers conducted manual field measurements 

on the coffee trees for ground-truthing. Five hundred crops 

were tagged to distinguish the crops from each other. The 

field measurements from these crops are used as ground-truth 

data and were compared to the system measurements to 

evaluate the accuracy of the predicted values of the system 

for leaf count and canopy coverage. 

For the leaf count, the actual values are obtained by 

manually counting the number of leaves of all 500 crops in 

actual plants and in the photos taken. 

To measure the canopy coverage of the coffee crops, the 

Leaf Area Index (LAI) was obtained. Strong relationships 

were found between canopy coverage and LAI of crop 

species that followed the exponential rise to a maximum form 

[7]. Thus, LAI can be used as a ground truth for evaluating 

the canopy coverage. Aerial images were used for the 

estimation of the canopy of the system. Thus, predicted 

values cannot be directly compared to the actual 

measurements of the leaf area. With this, the researchers used 

image processing methods to derive the area of leaves in 

terms of square centimeters per pixel by doing the following 

steps. First, the coffee crops were separated from the 

background. For the segmentation of the coffee crops, the 

Image Segmenter app in MATLAB® was used. Specifically, 

the Graph Cut feature from the Image Segmenter app was 

utilized. Next, the segmented image was converted into a 

binary image using an auto-generated function (Figure 3). 

The code creates the mask with the name sliderBW.  
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Figure 3. Workflow diagram of a masked image using RGB 

image. 

 

Afterward, the researchers measured the length in pixels 

of a leaf in each crop. This was measured using the imdistline 

tool in MATLAB®. Further, the number of true pixels of the 

same leaf was also obtained. The actual length of the leaf was 

divided by the measured length in pixels. The result was then 

squared. This gives the squared centimeters per pixel at 5m 

altitude. Lastly, the result from the previous step was 

multiplied by the number of true pixels of the leaf. This 

process was repeated for every coffee crop. 

 

2.3. Object detection 

The researchers described methods to locate plants in 

UAV imagery. The main task for this part is to implement a 

deep-learning object detector to localize or detect the coffee 

crop in an image.  

 

2.4. VGG-16 architecture 

VGG is a convolutional neural network that employs 

very low convolution filters (3x3) and increases the network's 

depth to 16 layers. Figure 4 shows the architecture of VGG-

16. The network receives images with dimensions of 

224x224x3 as input. The first and second layers have 64 

channels with 3x3 filter sizes and the same padding. 

Following a stride max pool layer, two convolution layers 

with 256 filter size and filter size are added. This is followed 

by the identical stride max pooling layer as the previous layer. 

Then, there are two convolution layers with 3x3 and 256 filter 

sizes. There are then two sets of three convolution layers and 

a max pool layer. Each has 512 identical filters with the same 

padding. This image is then sent into a convolution layer 

stack of two. This convolution and max pooling layer's filters 

are 3x3. It also uses 1x11 pixels in some layers to change the 

number of input channels. To prevent the spatial 

characteristic of the image, a 1-pixel padding, also known as 

identical padding, is applied after each convolution layer. By 

layering convolution and max-pooling layers, the researchers 

were able to create a 7x7x512 feature map. This output is 

flattened to produce a feature vector with the index (1, 

25088). In addition, three fully linked layers are present: the 

first layer takes input from the last feature vector and 

generates a (1, 4096) vector, the second layer outputs a (1, 

4096) vector, and the third layer outputs the channels for the 

input classes. Finally, the output of the third fully connected 

layer is passed to the softmax layer to normalize the 

classification vector. 

Figure 4. VGG-16 architecture.  

2.5. Model training 

The aerial images obtained during data gathering were 

enhanced to improve the image representation (Figure 5). It 

includes tasks conducted to manipulate digital images with 

the intention of quality optimization, noise reduction, or 

resolving lighting issues. The contour matching technique 

was used to tackle detection issues caused by the varying 

contours of the item and the complicated scene. Further, the 

images undergo segmentation to annotate the images pixel by 

pixel. This gave a more detailed model. Following the 

segmentation process, the features that contain the necessary 

information of the image input were extracted. The extracted 

features aided in extracting relevant data from the image 

input.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flow chart of detection-based leaf counting and 

canopy estimation. 

 

After finishing all the steps mentioned above, the training 

process was initialized. The training sets containing 1,343 

images were used for model optimization. The model was 

trained for 25 batch sizes and 50 epochs for 5 days. Other 

parameters include a warm-up period of 1000 iterations, a 

penalty threshold 0.5, L2 regularization of 0.0005, and a 

learning rate 0.001. The neural network models were trained 

with Keras using the TensorFlow backend. The 

experimentation and training of the model were performed 

using a virtual machine with Ubuntu (64-bit) operating 

system. The hardware components of the PC included 

5133MB Base Memory/RAM and 4 Processors. 

 

2.6. Detection-based leaf counting 

The researchers used an Application Programming 

Interface (API) to call out functions to the TensorFlow API 

model written in Python programming language. 

The VGGnet model with 16 layers (VGG-16) was the 

network used for leaf counting. The network is taught to 

identify the leaves present in a coffee tree, using image 

labeling provided in training, and only then count them. To 

reduce the training time and improve the robustness, the 

researchers adapted a pre-trained model instead of training the 

entire network from scratch. The researchers re-trained the 

model on their data. It got the pre-trained configurations of 

the model from the database of leaf images from Mendeley 

Data, which contains more than 4500 images.  

 

2.7. Estimation of canopy coverage 

API was also used to estimate the canopy coverage. A 

pre-trained VGG-16 patch-based CNN model was used. This 

method extracts and calculates the presence of canopy regions 
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in an image. The VGG-16 model was re-trained on the 

researchers’ dataset using model weights from Mendeley 

Data's leaf image database. 

 

2.8. Level of greenness 

The level of greenness of the coffee tree was identified 

using NDVI (Figure 6). NumPy Library from Python is used 

in the process. First, the color bands are identified after the 

converting the image into an NIR image. Color bands such as 

red(R), blue(B), and green(G) are classified. The RGB bands 

are plotted in a color histogram, which compromises the 

intensity of the colors and the wavelength of colors present in 

the detected crop. To get the level of greenness of the coffee 

tree, the green color bands are averaged using NumPy. 

Figure 6. NDVI and RGB image acquisition.  

 

2.9. Phenotyping system workflow 

Figure 7 shows the workflow diagram for the 

phenotyping system. Using the --image or --i argument, the 

aerial images are loaded and read by the system. The coffee 

trees present in the input image were detected. Then, the 

detected crops will be converted to NIR images. To do so, the 

input image will be first converted into a grayscale image. 

Then, color channels will be created including, red(R), blue

(B), and green(G) channels. Weights are set for each channel 

whereas R = 0.642, G = 0.532, and B = 0.44.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Workflow diagram for the phenotyping system.  

The sum of the weights is used to normalize the channels. 

Following that, the channels will be combined to produce a 

NIR image. The scale ratio is 255/max to increase the fully 

dynamic range. The result of the conversion will then be 

saved to the disk with the filename “image_nir.png.” 

Following the conversion of the RGB image to the NIR 

image, the system will now have the generated NIR and RGB 

images. The morphological attributes of the detected crops, 

including leaf count, level of greenness, and canopy coverage 

will be extracted using the processes discussed from detection

-based counting to the level of greenness. The system’s 

predicted values of the morphological attributes will be 

printed to the terminal. 

 

2.10. Evaluation of the phenotyping system 

In this phase, the researchers tested the performance and 

functionality of the system. For object detection, the model 

was tested on a previously unseen dataset, which is the 

remaining 30% of the dataset. The test data must not be used 

in training to avoid overfitting. The researchers used 

Confusion Matrix to calculate the performance accuracy of 

the system. The actual values (ground-truth) were compared 

with the predicted values of the model. The categories used 

for each class were derived: (1) true positive (TP) - an 

outcome where the model correctly predicts the object class 

training, (2) false positive (FP) - nothing is being detected 

when no object must be detected, (3) true negative (TN) - an 

outcome where the model incorrectly predicts the positive 

class. There is a detection even though no object must be 

detected, and (4) false negative (FN) failed to detect an object 

that is required to be detected. Further, the value of the 

predictions of the model can be determined by the following 

metrics: 

Accuracy. It is calculated as the percentage of correctly 

classified predictions to all predictions. 

 

 

 

Precision. It is the ratio of correctly positive predictions 

to the total predicted positive predictions.  

 

 

 

Recall. It is the ratio of correctly positive predictions to 

the total predictions in the actual class.  

 

 

 

F1 Score. The weighted average of precision and recall is 

used to calculate the F1 Score.  

 

 

 

For the leaf count and canopy coverage, the previously 

unseen images were fed to the system and the predicted 

values were recorded. The predicted values were then 

compared to the actual values or measurements taken by the 

researchers. To evaluate the accuracy of the predicted values, 

the following metrics were used: 

(1) 

(2) 

(3) 

(4) 
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Mean Absolute Percentage Error (MAPE). MAPE 

calculates the average of percentage errors. It is a metric for 

prediction accuracy. Table 1 shows the MAPE Interpretation.  

 

 

 

Table 1. MAPE interpretation.  

Mean Square Error (MSE). The mean squared error 

between the predicted and actual value is measured by MSE.  

 

 

 

3. Results and discussion 

The following section provides the features dataset 

collected for training the detection model, followed by the 

details of the ground truth measurements that validate the 

generated results of the system. Then, the results of model 

training, detection, and phenotyping are provided. 

 

3.1. Dataset 

Table 2 presents the date and time taken sequence for 

image acquisition, which started on September 24, 2021, 

when 72 images were acquired. For the next day, seven 

videos were gathered on November 17, 2021, which started at 

3:41 in the afternoon and ended at 4:53 pm. The seven videos 

were processed using extracting frames in MATLAB and 

resulted in 1,103 images with 1 coffee seedling per image. On 

March 3, 2022, the third day of data gathering happened, and 

168 images were acquired. Moreover, the fourth day was on 

March 10, 2022, which started at 11:50 in the morning and 

ended at 12:34 in the afternoon, 190 images were gathered. 

The fifth and sixth days of data gathering where on March 17 

and March 26, 2022, where 130 images (5th day) and 172 

images (6th day) were collected. Lastly, the last day for data 

gathering was April 7, 2022 which 83 images were attained. 

The data gathering resulted in 1,918 images, each image 

having 1 to 3 coffee seedlings. Images were saved as .jpg files 

with filenames that incorporate tray numbers (DJI_0001, 

DJI_0002, DJI_000,3, and so on).  

 

 

 

Table 2. Date and time taken sequence for dataset 

acquisition.  

Aerial images were collected on different days for the 

phenotyping system to achieve the highest possible accuracy. 

Figure 8 shows the (a) overhead shots of the field, and (b) 

sample images for the dataset taken by UAV. Table 2 is also 

presents the sequence of the date and time taken for image 

acquisition. 

Figure 8. (a) Overhead shots of the field, and (b) sample 

image for dataset taken by UAV.  

 

3.2. Ground truth 

Actual measurements of the morphological attributes 

(number of leaves, color of leaves, and canopy coverage 

estimation) of the coffee seedlings were obtained. Figure 9 

shows the relationship between the actual measurements 

(taken manually in the field) and derived measurements 

(taken using image processing methods) that were used to 

generate the ground-truth of true values. The researchers 

achieved a linear graph between actual measurements and 

derived measurements, which means that these two almost 

had the same values or matched each others measurements. 

MAPE was calculated, resulting in 19.9610, which means that 

it was a good forecast. Thus, derived measurements were 

acceptable to become the true values for ground truthing in 

terms of canopy coverage estimation. 

(5) 

MAPE Interpretation 

<10 Highly Accurate Forecasting 

10-20 Good Forecasting 

20-50 Reasonable Forecasting 

>50 Inaccurate Forecasting 

(6) 

Date Taken 
mm/dd/yy 

Start Time End Time No. of Images 

09/24/2021 2:28 PM 2:53 PM 72 

11/17/2021 3:41 PM 4:53 PM 1103 

03/03/2022 1:50 PM 2:50 PM 168 

03/10/2022 11:50 AM 12:34 PM 190 

03/17/2022 11:15 AM 1:49 PM 130 

03/26/2022 12:12 PM 12:55 PM 172 

04/07/2022 12:14 PM 12:44 PM 83 

  Total: 1918 
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Figure 9. (a) Derived measurements (cm²) vs. actual 

measurements (cm²), (b) actual measurements (cm²) vs. 

derived measurements (cm²).  

 

3.3. Model training 

Table 3 shows the summary of the VGG-16 architecture. 

The dimensions of the input picture, which is the RGB image 

with depth 3, change to 224x224x3 as it passes through the 

first and second convolutional layers. It has 3x3 convolution 

layers with stride 1 and a maxpool layer with 2x2 stride 2 

filters. The VGG-16 has 16 layers with a total of 25,088 

features after flattening the last convolutional layer and 1000 

nodes in the final layer because the VGG-16 primarily 

learned 1000-class classification tasks.  

Table 4 contains all the data acquired after 20 epochs for 

training loss, validation loss, accuracy, and F1-score. The 

training progress graph for this model is shown in Figure 10, 

which summarizes the data in Table 3. Figure 10 (a) shows 

that as the epoch increases, the training loss decreases while 

the validation loss increases. This graph indicates that the 

system has attained the possible high accuracy of the model. 

Figure 10 (b) shows all the data acquired after 20 epochs for 

accuracy. In comparison, Figure 10 (c) shows all the data 

acquired after 20 epochs for the F1-score. The accuracy of the 

model in the training set is 96.21%, and the F1-Score is 

91.21% after 20 epochs.  

 

 

 

 

 

Table 3. VGG-16 model summary  

 

 

 

(b) 

(a) 

Layer (type) Output Shape Param # 

input 1 

(Input Layer) 
[(None, 224, 224, 3)] 0 

conv1 1 (Conv2D) (None, 224, 224, 64) 1792 

conv1_2 (Conv2D) (None, 224, 224, 64) 36928 

pool1 1 

(MaxPooling2D) 
(None, 112, 112, 64) 0 

conv2 1 (Conv2D) (None, 112, 112, 128) 73856 

conv2_2 (Conv2D) (None, 112, 112, 128) 147584 

pool2 1 

(MaxPooling2D) 
(None, 56, 56, 128) 0 

conv3 1 (Conv2D) (None, 56, 56, 256) 295168 

conv3_2 (Conv2D) (None, 56, 56, 256) 590080 

conv3 3 (Conv2D) (None, 56, 56, 256) 590080 

pool3 1 

(MaxPooling2D) 
(None, 28, 28, 256) 0 

conv4_1 (Conv2D) (None, 28, 28, 512) 1180160 

conv4 2 (Conv2D) (None, 28, 28, 512) 2359808 

conv4 3 (Conv2D) (None, 28, 28, 512) 2359808 

pool4 1 

(MaxPooling2D) 
(None, 14, 14, 512) 0 

conv5 1 (Conv2D) (None, 14, 14, 512) 2359808 

conv5 2 (Conv2D) (None, 14, 14, 512) 2359808 

conv5_3 (Conv2D) (None, 14, 14, 512) 2359808 

pool5 1 

(MaxPooling2D) 
(None, 7, 7, 512) 0 

flatten (Flatten) (None, 25088) 0 

fc 1 (Dense) (None, 4096) 27336989 

fc 2 (Dense) (None, 4096) 8784825 

predictions (Dense) (None, 1000) 1474944 

Total params  52,311,446 

Trainable Params  52,311,446 

Non-trainable 

Params 
 0 
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Table 4. Accuracy of the model training.  

Figure 10. (a) Training and validation loss, (b) accuracy, and 

(c) f1-score. 

 

3.4. Detection-based Leaf Counting 

In Figure 11, the TensorFlow API is accessed via the 

web. The identified images of the coffee trees were uploaded 

to the web server and loaded to the re-trained VGG-16 model. 

The model processed the image and counted the number of 

leaves on the coffee tree. The predicted values were then sent 

to the API web server again, then back to the phenotyping 

system to display the results of the leaf count in the output 

terminal. Table 5 presents the tally of the predicted values of 

leaf count acquired from 500 test sets for the extraction of the 

morphological features fed on the phenotyping system. 

Figure 11. Extraction of leaf count 

 

Table 5. Leaf count distribution table of the 500 test sets.  

3.5. Estimation of canopy coverage 

Figure 12 also used API, but a different pre-trained 

model was used to estimate canopy coverage. As with leaf 

counting, the TensorFlow API is accessed via the web. The 

identified images were saved to a web server before being fed 

into the re-trained VGG-16 patch-based CNN model. The 

image was processed by the model, which calculated the 

Epoch 
Training 

Loss 
Validation 

Loss 
Accuracy F1-Score 

1 0.0391 0.0479 0.9563 0.9603 

2 0.0296 0.0434 0.9591 0.9091 

3 0.0221 0.0485 0.9591 0.9091 

4 0.0169 0.0483 0.9605 0.9105 

5 0.0130 0.0537 0.9615 0.9115 

6 0.0103 0.0551 0.9621 0.9121 

7 0.0082 0.0612 0.9622 0.9122 

8 0.0069 0.0633 0.9616 0.9116 

9 0.0055 0.0670 0.9613 0.9113 

10 0.0046 0.0712 0.9609 0.9109 

11 0.0004 0.0783 0.9614 0.9114 

12 0.0033 0.0764 0.9617 0.9117 

13 0.0030 0.0799 0.9618 0.9118 

14 0.0025 0.0832 0.9620 0.9120 

15 0.0023 0.0828 0.9613 0.9113 

16 0.0022 0.0848 0.9610 0.9110 

17 0.0019 0.0867 0.9614 0.9114 

18 0.0016 0.0894 0.9621 0.9121 

19 0.0016 0.0912 0.9615 0.9115 

20 0.0014 0.0903 0.9621 0.1921 

(a) 

(b) 

(c) 

No. of Leaves Frequency 

1 - 4 1 

5 - 8 10 

9 - 12 179 

13 - 16 163 

17 - 20 122 

21+ 3 

Total 478 
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coffee tree's canopy coverage. The predicted values were then 

sent back to the API web server before being sent back to the 

phenotyping system to display the canopy coverage results in 

the output terminal. Table 6 summarizes the predicted canopy 

coverage values obtained from the phenotyping system.  

Figure 12. Extraction of canopy coverage. 

 

Table 6. Canopy coverage distribution table of the 500                  

test sets. 

 

 

 

 

 

 

 

 

 

 

 

3.6. Level of greenness 

In Figure 13, the RGB image was converted to an NIR 

image. After that, the color bands (RGB) were identified, 

producing the NDVI image. The RGB bands were then 

plotted in a color histogram, which consisted of the intensity 

and wavelength of colors detected on crops. Through this, the 

leaf color was extracted by averaging the green color bands 

from the color histogram. The proponents used a scale of 1 to 

10 to represent the level of greenness of the coffee tree. Table 

7 represents the leaf color intensity scaling from 0 to 10 and 

also the frequency of each. As the result of the graph 

provided, most coffee crops have a leaf color intensity 10.  

Figure 13. Extraction of leaf color intensity. 

 

 

Table 7. Leaf color intensity distribution table of the 500 test 

sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. Phenotyping system program execution 

The researchers developed a phenotyping system of 

extracting morphological attributes from aerial images of 

coffee trees in Python. To run the program, a command 

terminal was utilized and the run.py script was responsible for 

loading and saving images. Figure 14 presents the 

phenotyping system, demonstrating the object detection and 

extraction of the morphological attributes of coffee tree aerial 

images. Figure 14(a) shows the object detection of coffee 

trees present in the input image.  

First, the image is loaded into the command terminal. 

The aerial image was read, and then the coffee crops were 

detected through the VGG-16 model. 

In Figure 14(b), extraction of morphological attributes 

took place. From the crops recognized by object detection, 

morphological attributes were extracted. For the leaf color, 

identified crops were pre-processed by the system to produce 

grayscale and contour-matching images. The RGB image is 

then converted to an NIR image, yielding the NDVI image. 

The green color bands were then averaged resulting in the 

extracted level of greenness of the coffee tree. For the canopy 

coverage and the leaf count, the system used an API and pre-

trained models. VGG-16 patch-based CNN model was used 

for canopy coverage, while VGGnet model with 16 layers 

was used for leaf count. Identified crops of coffee tree  

images were processed through these models to extract the 

morphological attributes. As a result, the predicted values of 

the estimation of canopy coverage, number of leaves, and 

level of greenness were displayed in the output terminal of the 

system.  

Canopy Coverage (cm²) Frequency 

1 - 20 64 

21 - 40 169 

41 - 60 110 

61 - 80 64 

81 - 100 42 

101+ 29 

Total 478 

Leaf Color Intensity  Frequency 

0 7 

1 7 

2 4 

3 7 

4 5 

5 3 

6 6 

7 4 

8 9 

9 1 

10 447 

Total 500 
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Figure 14. Phenotyping system showing the (a) object 

detection of coffee trees and (b) extraction of morphological 

attributes. 

 

3.8. Testing of the phenotyping system 

About 500 previously unseen coffee crops were fed to the 

system for testing. Out of the 500 coffee crops, the following 

were the results of the two sample test images of the 

phenotyping system. Table 8 demonstrates the corresponding 

output for each input of the sample test images. The filename 

of the sample test image was entered into a common terminal 

as the input of the phenotyping system. For each input, there 

are two sets of outputs. The first set of outputs was the results 

for the leaf count, level of greenness, and canopy coverage for 

each detected crop. These results were displayed in the 

terminal. Meanwhile, the second set of output was the images 

generated by the phenotyping system, which was saved to 

disk. 

 

Table 8. Results of the two sample test images of the 

phenotyping system. Results of the two sample test images of 

the phenotyping system.  

3.9. Evaluation of the performance of machine vision in 

phenotyping 

 

Table 9 shows the values obtained for the evaluation 

metrics of object detection through the confusion matrix. The 

accuracy acquired was 0.91478, precision was 0.925208, 

recall was 0.9382, and F1-score was 0.93166, all high values 

indicating that the model used in object detection was good 

and accurate.  

 

Table 9. Evaluation results for the object detection.  

Figure 15 shows that the predicted and true values for the 

leaf count overlap, indicating that the values obtained were 

relatively close. Based on the MAPE interpretation metrics, 

the calculated MAPE for the leaf count was 11.6093, 

indicating that it is a great prediction. 

Figure 15. Predicted values vs true values.    

 

Figure 16 shows the canopy coverage between the true 

and predicted values of the coffee crops. It demonstrates that 

the majority of the values obtained manually and through the 

system have a high linear correlation.  

(a) 

(b) 

Accuracy Precision Recall F1-Score 

0.91478 0.925208 0.9382 0.93166 
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Figure 15. Predicted values vs true values.    

 

Figure 16 shows the canopy coverage between the true 

and predicted values of the coffee crops. It demonstrates that 

the majority of the values obtained manually and through the 

system have a high linear correlation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Data evaluation of canopy coverage of coffee 

crops (predicted values vs true values). 

 

The MSE and MAPE between the true and predicted 

canopy coverage values were also calculated; the MSE and 

MAPE are 246.1403 and 15.6662, respectively. These values 

are low errors indicating good prediction accuracy.  

However, MSE, or Mean Squared Error, is not a good 

indicator of accuracy for the system since it is affected by the 

standard error, is based on the square of error, and is scale-

dependent, whereas MAPE is not since it can be computed 

with respect to data that are guaranteed to be strictly positive. 

That is why MAPE is a more precise metric. 

 

4.  Conclusions 

This study focuses on developing a phenotyping system 

for aerial images of coffee trees using machine vision. A 

single camera drone was used for data gathering, and the 

researchers were able to establish a total number of 1,918 

aerial images dataset of coffee trees. It was divided into two 

sets: training and testing, with a 70:30 ratio of 1,343 images 

for training and 575 for testing. Using a Python-based 

phenotyping system, the researchers were able to extract the 

morphological characteristics of leaf count, leaf color 

intensity, and canopy coverage of the coffee trees. VGG-16 

was used for object detection and extraction of leaf count, 

NDVI was used to determine the level of greenness, and 

VGG-16 patch-based CNN model was used to estimate 

canopy coverage.  

The evaluation results show that the model for object 

detection has a high accuracy rate with a value of 0.91478 for 

accuracy, 0.925208 for precision, 0.9382 for recall, and 

0.93166 for f1-score. The MAPE for leaf count was 

11.6093%, and 15.6662% for canopy coverage, indicating 

that the phenotyping system has good forecasting accuracy in 

extracting the morphological characteristics of coffee trees. 

  The researchers would like to make the 

following recommendations for future researchers. These 

suggestions may help improve and enhance the phenotyping 

system for coffee trees. The researchers suggested getting the 

leaf color of coffee crops based on their nitrogen level 

content. With this, coffee crops can be determined if they are 

healthy or not. Other algorithms can be used by future 

researchers in getting the morphological attributes of coffee 

crops to possibly get a higher accuracy for the phenotyping 

system. Future researchers can make a Graphical User 

Interface (GUI) for the phenotyping system for coffee trees 

which will provide a convenient and intuitive way to operate 

the phenotyping system for coffee trees.  
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